File size: 65,472 Bytes
4da7cab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
# Copyright (c) 2024 Boston Dynamics AI Institute LLC. All rights reserved.

import math
from itertools import chain
from typing import Any, Optional
from omegaconf import OmegaConf

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.functional import interpolate
from einops.layers.torch import Rearrange

from transformers import PretrainedConfig, PreTrainedModel
from transformers import AutoConfig, AutoModel, AutoProcessor, AutoImageProcessor
from transformers.models.vit.modeling_vit import ViTEmbeddings, ViTModel

def handle_feature_output(
    x: torch.Tensor, feature_reduce_method: Optional[str] = None, num_discard_tokens: int = 0
) -> torch.Tensor:
    """Handle feature output from transformer.

    Args:
        x (torch.Tensor): input feature to be handled. shape is
            [B, 1+H*W+N, C] if including both CLS and register tokens.
            [B, 1+H*W, C] for standard model (N=0).
            [B, H*W, C] for model without CLS.
        feature_reduce_method (Optional[str]): method to select token. Options:
            - `mean_pooling`: average over spatial tokens (non CLS tokens), output shape = [B, C].
            - `max_pooling`: max over spatial tokens, output shape = [B, C].
            - `cls`: return CLS token only, output shape = [B, C].
            - `identity`: return the feature without touching it, output shape = input shape.
            - `None`: return spatial tokens, output shape = [B, H*W, C] (assuming input is [B, 1+H*W, C]).
            suppose raw feature is in shape [B, 1+H*W, C], `1` corresponds to CLS token.
        num_discard_tokens (int):
            number of tokens to be discarded. Assuming they are at the end of the sequence.
    Returns:
        torch.Tensor: selected feature tokens.
    """

    match feature_reduce_method:
        case "mean_pooling":
            return torch.mean(x[:, 1 : x.size(1) - num_discard_tokens], dim=1)  # [B, C]
        case "max_pooling":
            return torch.amax(x[:, 1 : x.size(1) - num_discard_tokens], dim=1)  # [B, C]
        case "cls":
            return x[:, 0]  # [B, C]
        case "identity":
            return x
        case None:
            return x[:, 1 : x.size(1) - num_discard_tokens]
        case _:
            raise NotImplementedError(f"feature_reduce_method {feature_reduce_method} it not implemented.")


# Modified from huggingface transformers ViTEmbeddings
# Original Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class ViTEmbeddingsNoCLS(ViTEmbeddings):
    """ViT Embedding Module without CLS token."""

    def __init__(self, config: AutoConfig, use_mask_token: bool = False):
        """Initialization.

        Args:
            config (AutoConfig): config for ViT.
            use_mask_token (bool, optional): whether to use mask token. Defaults to False.
        """
        super(ViTEmbeddingsNoCLS, self).__init__(config, use_mask_token=use_mask_token)
        self.cls_token = None

    def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
        """
        This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
        resolution images.

        Source:
        https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
        """

        num_patches = embeddings.shape[1]
        num_positions = self.position_embeddings.shape[1] - 1
        if num_patches == num_positions and height == width:
            return self.position_embeddings
        patch_pos_embed = self.position_embeddings[:, 1:]
        dim = embeddings.shape[-1]
        h0 = height // self.config.patch_size
        w0 = width // self.config.patch_size
        # we add a small number to avoid floating point error in the interpolation
        # see discussion at https://github.com/facebookresearch/dino/issues/8
        h0, w0 = h0 + 0.1, w0 + 0.1
        patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
        patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed,
            scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
            mode="bicubic",
            align_corners=False,
        )
        assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1]
        patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
        return patch_pos_embed

    def forward(
        self,
        pixel_values: torch.Tensor,
        bool_masked_pos: Optional[torch.BoolTensor] = None,
        interpolate_pos_encoding: bool = False,
    ) -> torch.Tensor:
        batch_size, num_channels, height, width = pixel_values.shape
        embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)

        if bool_masked_pos is not None:
            seq_length = embeddings.shape[1]
            mask_tokens = self.mask_token.expand(batch_size, seq_length, -1)
            # replace the masked visual tokens by mask_tokens
            mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
            embeddings = embeddings * (1.0 - mask) + mask_tokens * mask

        # add positional encoding to each token
        if interpolate_pos_encoding:
            embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
        else:
            embeddings = embeddings + self.position_embeddings[:, 1:]

        embeddings = self.dropout(embeddings)

        return embeddings


# modified from huggingface transformers ViTModel
class ViTModelNoCLS(ViTModel):
    """ViT Model without CLS token."""

    def __init__(self, config: AutoConfig, add_pooling_layer: bool = True, use_mask_token: bool = False) -> None:
        super(ViTModelNoCLS, self).__init__(config, add_pooling_layer, use_mask_token)
        self.embeddings = ViTEmbeddingsNoCLS(config, use_mask_token=use_mask_token)
        self.no_cls = True

    def _init_weights(self, module: nn.Linear | nn.Conv2d | nn.LayerNorm) -> None:
        """Initialize the weights"""
        if isinstance(module, (nn.Linear, nn.Conv2d)):
            # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
            # `trunc_normal_cpu` not implemented in `half` issues
            module.weight.data = nn.init.trunc_normal_(
                module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
            ).to(module.weight.dtype)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, ViTEmbeddings):
            module.position_embeddings.data = nn.init.trunc_normal_(
                module.position_embeddings.data.to(torch.float32),
                mean=0.0,
                std=self.config.initializer_range,
            ).to(module.position_embeddings.dtype)


# modified from huggingface transformers ViTEmbeddings
class ViTEmbeddingsReg(ViTEmbeddings):
    """
    ViT Embedding Module with register tokens. https://openreview.net/forum?id=2dnO3LLiJ1
    """

    def __init__(self, config: AutoConfig, use_mask_token: bool = False, num_reg_tokens: int = 7):
        super(ViTEmbeddingsReg, self).__init__(config, use_mask_token=use_mask_token)
        self.reg_token = nn.Parameter(torch.randn(1, num_reg_tokens, config.hidden_size))
        self.num_reg_tokens = num_reg_tokens
        self.reg_pos_embed = nn.Parameter(torch.randn(1, num_reg_tokens, config.hidden_size))

        self.reg_pos_embed.data = nn.init.trunc_normal_(
            self.reg_pos_embed.data.to(torch.float32),
            mean=0.0,
            std=self.config.initializer_range,
        ).to(self.reg_pos_embed.dtype)

        self.reg_token.data = nn.init.trunc_normal_(
            self.reg_token.data.to(torch.float32),
            mean=0.0,
            std=self.config.initializer_range,
        ).to(self.reg_token.dtype)

    def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
        """
        This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
        resolution images.

        Source:
        https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
        """

        num_patches = embeddings.shape[1] - 1 - self.num_reg_tokens
        num_positions = self.position_embeddings.shape[1] - 1
        if num_patches == num_positions and height == width:
            return self.position_embeddings
        class_pos_embed = self.position_embeddings[:, 0]
        patch_pos_embed = self.position_embeddings[:, 1:]
        reg_pos_embed = self.reg_pos_embed
        dim = embeddings.shape[-1]
        h0 = height // self.config.patch_size
        w0 = width // self.config.patch_size
        # we add a small number to avoid floating point error in the interpolation
        # see discussion at https://github.com/facebookresearch/dino/issues/8
        h0, w0 = h0 + 0.1, w0 + 0.1
        patch_pos_embed = patch_pos_embed.reshape(1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
        patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
        patch_pos_embed = nn.functional.interpolate(
            patch_pos_embed,
            scale_factor=(h0 / math.sqrt(num_positions), w0 / math.sqrt(num_positions)),
            mode="bicubic",
            align_corners=False,
        )
        assert int(h0) == patch_pos_embed.shape[-2] and int(w0) == patch_pos_embed.shape[-1]
        patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
        return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed, reg_pos_embed), dim=1)

    def forward(
        self,
        pixel_values: torch.Tensor,
        bool_masked_pos: Optional[torch.BoolTensor] = None,
        interpolate_pos_encoding: bool = False,
    ) -> torch.Tensor:
        batch_size, num_channels, height, width = pixel_values.shape
        embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)

        if bool_masked_pos is not None:
            seq_length = embeddings.shape[1]
            mask_tokens = self.mask_token.expand(batch_size, seq_length, -1)
            # replace the masked visual tokens by mask_tokens
            mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
            embeddings = embeddings * (1.0 - mask) + mask_tokens * mask

        # add the [CLS] token to the embedded patch tokens
        cls_tokens = self.cls_token.expand(batch_size, -1, -1)
        reg_tokens = self.reg_token.expand(batch_size, -1, -1)
        embeddings = torch.cat((cls_tokens, embeddings, reg_tokens), dim=1)

        # add positional encoding to each token
        if interpolate_pos_encoding:
            embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
        else:
            embeddings = embeddings + torch.cat([self.position_embeddings, self.reg_pos_embed], dim=1)

        embeddings = self.dropout(embeddings)

        return embeddings


# modified from huggingface transformers ViTModel
class ViTModelReg(ViTModel):
    """ViT Model with register tokens. https://openreview.net/forum?id=2dnO3LLiJ1"""

    def __init__(
        self, config: AutoConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, num_reg_tokens: int = 7
    ):
        super(ViTModelReg, self).__init__(config, add_pooling_layer, use_mask_token)
        self.embeddings = ViTEmbeddingsReg(config, use_mask_token=use_mask_token, num_reg_tokens=num_reg_tokens)
        self.num_reg_tokens = num_reg_tokens

    def _init_weights(self, module: nn.Linear | nn.Conv2d | nn.LayerNorm) -> None:
        """Initialize the weights"""
        if isinstance(module, (nn.Linear, nn.Conv2d)):
            # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid
            # `trunc_normal_cpu` not implemented in `half` issues
            module.weight.data = nn.init.trunc_normal_(
                module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range
            ).to(module.weight.dtype)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
        elif isinstance(module, ViTEmbeddings):
            module.position_embeddings.data = nn.init.trunc_normal_(
                module.position_embeddings.data.to(torch.float32),
                mean=0.0,
                std=self.config.initializer_range,
            ).to(module.position_embeddings.dtype)
            module.cls_token.data = nn.init.trunc_normal_(
                module.cls_token.data.to(torch.float32),
                mean=0.0,
                std=self.config.initializer_range,
            ).to(module.cls_token.dtype)


class DeiT(nn.Module):
    """DeiT model.

    Paper: Training data-efficient image transformers & distillation through attention
        https://arxiv.org/abs/2012.12877
    Huggingface Reference: https://huggingface.co/docs/transformers/en/model_doc/deit

    Attributes:
        model_name (str): name of the model.
        pretrained (bool): whether to use pretrained weights.
    """

    def __init__(
        self,
        model_name: str = "facebook/deit-small-patch16-224",
        pretrained: bool = False,
        image_size: int = 224,
    ):
        super().__init__()
        self.image_size = image_size
        model = AutoModel.from_pretrained(model_name)
        if pretrained:
            self.model = model
        else:
            deit_config = model.config
            self.model = AutoModel.from_config(deit_config)
            del model

        self.model.pooler = nn.Identity()

        self.processor = AutoProcessor.from_pretrained(model_name)

    def get_feature_size(
        self,
        keep_spatial: bool = False,
        return_torch_size: bool = False,
    ) -> torch.Size | tuple[int, ...]:
        """Get the size of the feature.

        Args:
            keep_spatial (bool): keep spatial dim of the feature shape. Defaults to False.
            return_torch_size (bool): if true, return torch.Size type. Defaults to False.

        Returns:
            torch.Size | tuple[int, ...]: returned feature shape.
        """
        with torch.inference_mode():
            image_size = (224, 224)
            x = torch.zeros((1, *image_size, 3), dtype=torch.uint8)
            y = self.forward(x)[:, 1:]  # for getting feature size, discard cls token
            size = y.size()[1:][::-1]
            if keep_spatial:
                assert math.isqrt(size[-1])
                h = w = int(math.sqrt(size[-1]))
                size = (size[0], h, w)
                if return_torch_size:
                    size = torch.Size(size)
            return size

    def forward(
        self,
        x: torch.Tensor,
        do_resize: bool = True,
        interpolate_pos_encoding: Optional[bool] = None,
        do_rescale: bool = True,
        do_normalize: bool = True,
    ) -> torch.Tensor:
        """Forward pass of the model

        Args:
            x (torch.Tensor): model input.

            - arguments for self.processor. Details can be find at
                https://huggingface.co/docs/transformers/v4.41.3/en/model_doc/deit#transformers.DeiTImageProcessor
            do_resize (bool): if do resizing in processor. Defaults to True.
            interpolate_pos_encoding (bool): if interpolate the positional embedding. Defaults to None.
            do_rescale (bool): if do rescaling (0-255 -> 0-1) in processor. Defaults to True.
            do_normalize (bool): if do normalize in processor. Defaults to True.

        Returns:
            torch.Tensor: model output.
        """
        input = self.processor(
            x, return_tensors="pt", do_resize=do_resize, do_rescale=do_rescale, do_normalize=do_normalize
        ).to(self.model.device)
        y = self.model(**input, interpolate_pos_encoding=interpolate_pos_encoding)
        return y.last_hidden_state


class DeiTNoCLS(nn.Module):
    """Modified DeiT model without CLS token."""

    def __init__(
        self, model_name: str = "nocls-facebook/deit-small-patch16-224", pretrained: bool = False, image_size: int = 224
    ):
        super().__init__()
        self.image_size = image_size
        pretrained_model_name = model_name.replace("nocls-", "")
        deit_config = AutoConfig.from_pretrained(pretrained_model_name)
        self.model = ViTModelNoCLS(deit_config)
        if pretrained:
            pretrained_model = AutoModel.from_pretrained(pretrained_model_name)
            pretrained_dict = {k: v for k, v in pretrained_model.state_dict().items() if k in self.model.state_dict()}
            self.load_state_dict(pretrained_dict, strict=False)
            del pretrained_model, pretrained_dict

        self.model.pooler = nn.Identity()
        self.processor = AutoProcessor.from_pretrained(pretrained_model_name)
        self.no_cls = True

    def get_feature_size(
        self,
        keep_spatial: bool = False,
        return_torch_size: bool = False,
    ) -> torch.Size | tuple[int, ...]:
        """Get the size of the feature.

        Args:
            keep_spatial (bool): keep spatial dim of the feature shape. Defaults to False.
            return_torch_size (bool): if true, return torch.Size type. Defaults to False.

        Returns:
            torch.Size | tuple[int, ...]: returned feature shape.
        """
        with torch.inference_mode():
            image_size = (self.image_size, self.image_size)
            x = torch.zeros((1, *image_size, 3), dtype=torch.uint8)
            y = self.forward(x)
            size = y.size()[1:][::-1]
            if keep_spatial:
                assert math.isqrt(size[-1])
                h = w = int(math.sqrt(size[-1]))
                size = (size[0], h, w)
                if return_torch_size:
                    size = torch.Size(size)
            return size

    def forward(
        self,
        x: torch.Tensor,
        do_resize: bool = True,
        interpolate_pos_encoding: Optional[bool] = None,
        do_rescale: bool = True,
        do_normalize: bool = True,
    ) -> torch.Tensor:
        """Forward pass of the model

        Args:
            x (torch.Tensor): model input.

            - arguments for self.processor. Details can be find at
                https://huggingface.co/docs/transformers/v4.41.3/en/model_doc/deit#transformers.DeiTImageProcessor
            do_resize (bool): if do resizing in processor. Defaults to True.
            do_rescale (bool): if do rescaling (0-255 -> 0-1) in processor. Defaults to True.
            do_normalize (bool): if do normalize in processor. Defaults to True.

            - argument for forward
            interpolate_pos_encoding (bool): if interpolate the positional embedding. Defaults to None.

        Returns:
            torch.Tensor: model output.
        """
        input = self.processor(
            x, return_tensors="pt", do_resize=do_resize, do_rescale=do_rescale, do_normalize=do_normalize
        ).to(self.model.device)
        y = self.model(**input, interpolate_pos_encoding=interpolate_pos_encoding)
        return y.last_hidden_state


class DeiTReg(nn.Module):
    """Modified DeiT model with register tokens."""

    def __init__(
        self,
        model_name: str = "reg-facebook/deit-small-patch16-224",
        pretrained: bool = False,
        image_size: int = 224,
        num_reg_tokens: int = 7,
    ):
        super().__init__()
        self.image_size = image_size
        pretrained_model_name = model_name.replace("reg-", "")
        deit_config = AutoConfig.from_pretrained(pretrained_model_name)
        self.model = ViTModelReg(deit_config, num_reg_tokens=num_reg_tokens)
        if pretrained:
            pretrained_model = AutoModel.from_pretrained(pretrained_model_name)
            pretrained_dict = {k: v for k, v in pretrained_model.state_dict().items() if k in self.model.state_dict()}
            self.load_state_dict(pretrained_dict, strict=False)
            del pretrained_model, pretrained_dict

        self.model.pooler = nn.Identity()
        self.processor = AutoProcessor.from_pretrained(pretrained_model_name)
        self.num_reg_tokens = num_reg_tokens

    def get_feature_size(
        self,
        keep_spatial: bool = False,
        return_torch_size: bool = False,
    ) -> torch.Size | tuple[int, ...]:
        """Get the size of the feature.

        Args:
            keep_spatial (bool): keep spatial dim of the feature shape. Defaults to False.
            return_torch_size (bool): if true, return torch.Size type. Defaults to False.

        Returns:
            torch.Size | tuple[int, ...]: returned feature shape.
        """
        with torch.inference_mode():
            image_size = (self.image_size, self.image_size)
            x = torch.zeros((1, *image_size, 3), dtype=torch.uint8)
            y = self.forward(x)[:, 1 : -self.num_reg_tokens]
            size = y.size()[1:][::-1]
            if keep_spatial:
                assert math.isqrt(size[-1])
                h = w = int(math.sqrt(size[-1]))
                size = (size[0], h, w)
                if return_torch_size:
                    size = torch.Size(size)
            return size

    def forward(
        self,
        x: torch.Tensor,
        do_resize: bool = True,
        interpolate_pos_encoding: Optional[bool] = None,
        do_rescale: bool = True,
        do_normalize: bool = True,
    ) -> torch.Tensor:
        """Forward pass of the model

        Args:
            x (torch.Tensor): model input.

            - arguments for self.processor. Details can be find at
                https://huggingface.co/docs/transformers/v4.41.3/en/model_doc/deit#transformers.DeiTImageProcessor
            do_resize (bool): if do resizing in processor. Defaults to True.
            interpolate_pos_encoding (bool): if interpolate the positional embedding. Defaults to None.
            do_rescale (bool): if do rescaling (0-255 -> 0-1) in processor. Defaults to True.
            do_normalize (bool): if do normalize in processor. Defaults to True.

        Returns:
            torch.Tensor: model output.
        """
        input = self.processor(
            x, return_tensors="pt", do_resize=do_resize, do_rescale=do_rescale, do_normalize=do_normalize
        ).to(self.model.device)
        y = self.model(**input, interpolate_pos_encoding=interpolate_pos_encoding)
        return y.last_hidden_state


def build_backbone(model_name: str, pretrained: bool = False, image_size: int = 224, **kwargs: Any) -> nn.Module:
    """Build the backbone visual encoder of robot vision foundation model.

    Args:
        model_name (str): name of the model.
        pretrained (bool): whether to use pretrained weights. Defaults to False.
        image_size (int): size of the image. Assume a square image. Defaults to 224
        kwargs (Any): any kwargs specific to some models. For example,
            `num_reg_tokens` for `DeiTReg` when `"reg"` in `model_name`

    Returns:
        nn.Module: backbone network.
    """
    if "reg" in model_name:
        return DeiTReg(model_name=model_name, pretrained=pretrained, image_size=image_size, **kwargs)
    elif "nocls" in model_name:
        return DeiTNoCLS(model_name=model_name, pretrained=pretrained, image_size=image_size, **kwargs)
    elif "deit" in model_name:
        return DeiT(model_name=model_name, pretrained=pretrained, image_size=image_size)
    else:
        raise NotImplementedError(f"Requested {model_name} is not implemented.")

class Interpolation(nn.Module):
    """Interpolation nn.Module wrap for nn.functional.interpolate.

    Attributes:
        target_size (tuple[int, int] | torch.Size): target spatial size of this interpolation.
    """

    def __init__(self, target_size: tuple[int, int] | torch.Size) -> None:
        super().__init__()
        self.target_size = target_size

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """Very simple forward pass to call interpolate()."""
        return interpolate(x, self.target_size)


class LinearAdapterHead(nn.Module):
    """Adapter head contains a single linear layer."""
    def __init__(
        self, source_size: tuple[int, ...] | torch.Size, target_size: tuple[int, ...] | torch.Size
    ):
        """Initialization function for LinearAdapterHead.
        Args:
            source_size (tuple[int, ...] | torch.Size): the size of the source feature.
            target_size (tuple[int, ...] | torch.Size): the size of the target feature.
            num_layer (int): number of MLP layers (One linear layer if num_layer = 1).
        """
        super().__init__()

        self.source_size = source_size
        self.target_size = target_size

        source_channel_size = self.source_size[0]
        target_channel_size = self.target_size[0]

        self.adapter = nn.Sequential(
            nn.Linear(source_channel_size, target_channel_size),
        )

    def forward(self, x: torch.Tensor, backbone_no_cls: bool = False) -> torch.Tensor:
        """Forward pass for the adapter. """
        assert backbone_no_cls == False
        # x: [B, (1+H*W), C]
        # LinearAdapterHead is used only when there is cls token in the backbone.
        x = x[:, 0]
        x = self.adapter(x)
        return x  # [B, (H*W), C]


class MLPAdapterHead(nn.Module):
    """MLP Adapter module.

    Transforms features in shape source size [B, (H_s*W_s), C_s] to target size [B, (H_t*W_t), C_t].
    Will first do interpolation to match the spatial size [H_t, W_t],
    followed by MLP to project to the target channel dimension [C_t].

    Attributes:
        source_size (tuple[int, ...] | torch.Size): the size of the source feature. [C, H, W]
        target_size (tuple[int, ...] | torch.Size): the size of the target feature. [C, H, W]
        adapter     (nn.Module):                    the adapter module.
        interpolation (nn.Module):                  interpolation to adjust sizes before MLP.
    """

    def __init__(
        self, source_size: tuple[int, ...] | torch.Size, target_size: tuple[int, ...] | torch.Size, num_layer: int
    ):
        """Initialization function for MLPAdapter.

        Args:
            source_size (tuple[int, ...] | torch.Size): the size of the source feature.
            target_size (tuple[int, ...] | torch.Size): the size of the target feature.
            num_layer (int): number of MLP layers (One linear layer if num_layer = 1).
        """
        super().__init__()
        assert num_layer >= 1, f"`num_layer` in {self._get_name()} should >= 1. Got {num_layer}"

        self.source_size = source_size
        self.target_size = target_size

        source_channel_size = self.source_size[0]
        target_channel_size = self.target_size[0]

        self.interpolation = nn.Sequential(
            nn.Identity(),
        )
        if self.source_size[1] != self.target_size[1]:
            self.interpolation = nn.Sequential(
                Rearrange("b (h w) c-> b c h w", h=self.source_size[1], w=self.source_size[2]),
                Interpolation(self.target_size[1:]),
                Rearrange("b c h w-> b (h w) c"),
            )

        if num_layer == 1:
            self.adapter = nn.Sequential(
                nn.Linear(source_channel_size, target_channel_size),
            )
        elif num_layer >= 2:
            hidden_dim = source_channel_size * 2
            self.adapter = nn.Sequential(
                nn.Linear(source_channel_size, hidden_dim),
                *list(
                    chain.from_iterable([[nn.ReLU(), nn.Linear(hidden_dim, hidden_dim)] for _ in range(num_layer - 2)])
                ),
                nn.ReLU(),
                nn.Linear(hidden_dim, target_channel_size),
            )

    def forward(self, x: torch.Tensor, backbone_no_cls: bool = False) -> torch.Tensor:
        """Forward pass for the adapter. First interpolation then MLP."""
        # x: [B, (1)+H*W, C]
        if not backbone_no_cls:
            x = x[:, 1:]
        # x: [B, (H*W), C]
        x = self.interpolation(x)
        x = self.adapter(x)
        return x  # [B, (H*W), C]


class ConvAdapterHead(nn.Module):
    """Convolutional Adapter module.

    Transforms features in shape source size [B, (H_s*W_s), C_s] to target size [B, (H_t*W_t), C_t].
    Uses CNN to map channel and spatial sizes jointly.
    Note: only work for (16, 16), (any, any), any <= 14, and (64, 64) spatial sizes for now.

    Attributes:
        source_size (tuple[int, ...] | torch.Size): the size of the source feature.
        target_size (tuple[int, ...] | torch.Size): the size of the target feature.
        adapter     (nn.Module):                    the adapter module.
        interpolation (nn.Module):                  interpolation to adjust sizes before MLP.
    """

    def __init__(
        self,
        source_size: tuple[int, ...] | torch.Size,
        target_size: tuple[int, ...] | torch.Size,
    ):
        """Initialization function for ConvAdapter.

        Args:
            source_size (tuple[int, ...] | torch.Size): the size of the source feature.
            target_size (tuple[int, ...] | torch.Size): the size of the target feature.
        """
        super().__init__()
        self.source_size = source_size
        self.target_size = target_size

        hidden_dim = self.source_size[0] * 2
        source_channel_size = self.source_size[0]
        target_channel_size = self.target_size[0]

        if self.source_size[1] < 12:
            raise NotImplementedError("feature spatial size smaller than 12x12 is not supported.")
        elif self.source_size[1] < 16:  # pad (any, any), any <= 14 to (16, 16)
            self.pad = nn.Sequential(
                Rearrange("b (h w) c-> b c h w", h=self.source_size[1], w=self.source_size[2]),
                nn.ConvTranspose2d(
                    source_channel_size,
                    source_channel_size,
                    kernel_size=3,
                    stride=1,
                    output_padding=14 - self.source_size[1],
                ),
            )
            self.source_size = (self.source_size[0], 16, 16)
        elif self.source_size[1] == 16 or self.source_size[1] == 64:  # do nothing for (16, 16) and (64, 64)
            self.pad = nn.Sequential(
                Rearrange("b (h w) c-> b c h w", h=self.source_size[1], w=self.source_size[2]),
            )
        else:
            raise NotImplementedError("feature spatial size (>=16x16) other than 16x16 and 64x64 is not supported.")

        if self.source_size[1] < self.target_size[1]:  # (16, 16) / (14, 14) to (64, 64)
            self.adapter = nn.Sequential(
                nn.LayerNorm(self.source_size),
                nn.ConvTranspose2d(source_channel_size, hidden_dim, kernel_size=3, stride=2, padding=1),  # 31
                nn.ReLU(),
                nn.LayerNorm([hidden_dim, 31, 31]),
                nn.ConvTranspose2d(hidden_dim, hidden_dim, kernel_size=3, stride=2, output_padding=1),  # 64
                nn.ReLU(),
                nn.LayerNorm([hidden_dim, 64, 64]),
                nn.ConvTranspose2d(hidden_dim, target_channel_size, kernel_size=3, stride=1, padding=1),  # 64
                Rearrange("b c h w-> b (h w) c"),
            )
        elif self.source_size[1] == self.target_size[1]:  # (16, 16) to (16, 16)
            self.adapter = nn.Sequential(
                nn.LayerNorm(self.source_size),
                nn.Conv2d(source_channel_size, hidden_dim, kernel_size=3, padding=1),  # 16
                nn.ReLU(),
                nn.LayerNorm([hidden_dim, *self.source_size[1:]]),
                nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, padding=1),  # 16
                nn.ReLU(),
                nn.LayerNorm([hidden_dim, *self.source_size[1:]]),
                nn.Conv2d(hidden_dim, target_channel_size, kernel_size=3, padding=1),  # 16
                Rearrange("b c h w-> b (h w) c"),
            )
        else:  # (64, 64) to (16, 16)
            self.adapter = nn.Sequential(
                nn.LayerNorm(self.source_size),
                nn.Conv2d(source_channel_size, hidden_dim, kernel_size=3, stride=2, padding=1),  # 32
                nn.ReLU(),
                nn.LayerNorm([hidden_dim, 32, 32]),
                nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=2, padding=1),  # 16
                nn.ReLU(),
                nn.LayerNorm([hidden_dim, 16, 16]),
                nn.Conv2d(hidden_dim, target_channel_size, kernel_size=3, padding=1),  # 16
                Rearrange("b c h w-> b (h w) c"),
            )

    def forward(self, x: torch.Tensor, backbone_no_cls: bool = False) -> torch.Tensor:
        """Forward pass for ConvAdapter"""
        # x: [B, (1)+H*W, C]
        if not backbone_no_cls:
            x = x[:, 1:]
        # x: [B, H*W, C]
        x = self.pad(x)
        x = self.adapter(x)
        return x  # B, (H*W), C


class LightConvAdapterHead(nn.Module):
    """Light Convolutional Adapter module.

    Transforms features from source size in [B, (H_s*W_s), C_s] to target size [B, (H_t*W_t), C_t].
    Uses CNN to map channel and spatial sizes jointly.
    Note: only work for source sizes (H_s, W_s): (16, 16), (any, any), 12 <= any <= 14,
        and target sizes (H_t, W_t): (16, 16) and (64, 64) for now.

    Attributes:
        source_size (tuple[int, ...] | torch.Size): the size of the source feature,
            channel first (C, H, W).
        target_size (tuple[int, ...] | torch.Size): the size of the target feature,
            channel first (C, H, W).
        adapter     (nn.Module):                    the adapter module.
        interpolation (nn.Module):                  interpolation to adjust sizes before MLP.
    """

    def __init__(
        self,
        source_size: tuple[int, ...] | torch.Size,
        target_size: tuple[int, ...] | torch.Size,
        hidden_size_factor: int | float = 1.0,
    ):
        """Initialization function for ConvAdapter.

        Args:
            source_size (tuple[int, ...] | torch.Size): the size of the source feature.
            target_size (tuple[int, ...] | torch.Size): the size of the target feature.
            hidden_size_factor (int | float): the size of hidden dim of feature translator
                as a factor of input feature hidden dim.
        """
        super().__init__()
        if source_size[1] != source_size[2] or target_size[1] != target_size[2]:
            raise NotImplementedError(
                "Currently does not support non-square feature maps like source size"
                "{source_size} and target size {target_size}."
            )
        self.source_size = source_size
        self.target_size = target_size
        self.hidden_size_factor = hidden_size_factor

        hidden_dim = int(self.source_size[0] * hidden_size_factor)
        source_channel_size = self.source_size[0]
        target_channel_size = self.target_size[0]

        if self.source_size[1] < 12:
            raise NotImplementedError("feature spatial size smaller than 12x12 is not supported.")
        elif self.source_size[1] < 16 and self.target_size[1] >= 16:  # pad (any, any), any <= 14 to (16, 16)
            self.pad = nn.Sequential(
                Rearrange("b (h w) c-> b c h w", h=self.source_size[1], w=self.source_size[2]),
                nn.ConvTranspose2d(
                    source_channel_size,
                    source_channel_size,
                    kernel_size=3,
                    stride=1,
                    output_padding=14 - self.source_size[1],
                ),
            )
            self.source_size = (self.source_size[0], 16, 16)
        elif (self.source_size[1] == 16 or self.source_size[1] == 64) or \
             (self.source_size[1] == 14 and self.target_size[1] == 14):  
            # no padding for (16, 16), (64, 64) and (14, 14) <-> (14, 14)
            self.pad = nn.Sequential(
                Rearrange("b (h w) c-> b c h w", h=self.source_size[1], w=self.source_size[2]),
            )
        elif self.target_size[1] < 14:
            self.pad = nn.Sequential(
                Rearrange("b (h w) c-> b c h w", h=self.source_size[1], w=self.source_size[2]),
            )
        else:
            raise NotImplementedError("feature spatial size larger than 16x16 (other than 64x64) is not supported.")

        if self.source_size[1] == 16 and self.target_size[1] == 64:  # (16, 16) to (64, 64)
            self.adapter = nn.Sequential(
                nn.LayerNorm(self.source_size),
                nn.ConvTranspose2d(source_channel_size, hidden_dim, kernel_size=3, stride=2, padding=1),  # 31
                nn.ReLU(),
                nn.LayerNorm([hidden_dim, 31, 31]),
                nn.ConvTranspose2d(hidden_dim, hidden_dim, kernel_size=3, stride=2, output_padding=1),  # 64
                nn.ReLU(),
                nn.LayerNorm([hidden_dim, 64, 64]),
                Rearrange("b c h w-> b (h w) c"),
                nn.Linear(hidden_dim, target_channel_size),
            )
        elif self.source_size[1] == self.target_size[1]:  # (16, 16) to (16, 16)
            self.adapter = nn.Sequential(
                nn.LayerNorm(self.source_size),
                nn.Conv2d(source_channel_size, hidden_dim, kernel_size=3, padding=1),  # 16
                nn.ReLU(),
                nn.LayerNorm([hidden_dim, *self.source_size[1:]]),
                nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, padding=1),  # 16
                nn.ReLU(),
                nn.LayerNorm([hidden_dim, *self.source_size[1:]]),
                Rearrange("b c h w-> b (h w) c"),
                nn.Linear(hidden_dim, target_channel_size),
            )
        elif self.source_size[1] == 64 and self.target_size[1] == 16:  # (64, 64) to (16, 16)
            self.adapter = nn.Sequential(
                nn.LayerNorm(self.source_size),
                nn.Conv2d(source_channel_size, hidden_dim, kernel_size=3, stride=2, padding=1),  # 32
                nn.ReLU(),
                nn.LayerNorm([hidden_dim, 32, 32]),
                nn.Conv2d(hidden_dim, hidden_dim, kernel_size=3, stride=2, padding=1),  # 16
                nn.ReLU(),
                nn.LayerNorm([hidden_dim, 16, 16]),
                Rearrange("b c h w-> b (h w) c"),
                nn.Linear(hidden_dim, target_channel_size),
            )
        elif self.target_size[1] == 7:
            self.adapter = nn.Sequential(
                nn.LayerNorm(self.source_size),
                nn.Conv2d(source_channel_size, hidden_dim, kernel_size=4, stride=2, padding=1), #14x14 -> 7x7
                nn.ReLU(),
                nn.LayerNorm([hidden_dim, 7, 7]),
                Rearrange("b c h w-> b (h w) c"),
                nn.Linear(hidden_dim, target_channel_size)
            )
        else:
            NotImplementedError(f"{self.source_size} to {self.target_size} is not supported.")

    def forward(self, x: torch.Tensor, backbone_no_cls: bool = False) -> torch.Tensor:
        """Forward pass for ConvAdapter"""
        # x: [B, (1)+H*W, C]
        if not backbone_no_cls:
            x = x[:, 1:]
        x = self.pad(x)
        x = self.adapter(x)
        return x  # [B, H*W, C]


class FeatureTranslator(nn.Module):
    """Base class for the feature translator.

    The flow is backbone_adapter -> translator_stem -> translator_heads.

    Attributes:
        backbone_feature_size (torch.Size): the size of features of the backbone.
        target_feature_sizes (dict[str, torch.Size | tuple[int, ...]]): the sizes of features of target models.
        translator_hidden_size (int): the hidden dim of the translator. Defaults to 2048.
        target_model_names (list[str]): convenient attribute to hold all the names of the target models.

        backbone_adapter (nn.Module): the adapter to map channel dim of backbone to the translator hidden dim.
        translator_stem (nn.Module):  the shared stem for all target models.
        translator_heads (nn.ModuleDict): specific heads for different target models.
    """

    def __init__(
        self,
        backbone_feature_size: torch.Size,
        target_feature_sizes: dict[str, torch.Size | tuple[int, ...]],
        translator_hidden_size: int = 1024,
    ) -> None:
        """Initalization function for FeatureTranslator.

        Args:
            backbone_feature_size (torch.Size): the size of features of the backbone.
            target_feature_sizes (dict[str, torch.Size | tuple[int, ...]]): the sizes of features of target models.
            translator_hidden_size (int): the hidden dim of the translator. Defaults to 2048.
        """
        super().__init__()
        self.backbone_feature_size = backbone_feature_size  # (C, H, W)
        self.target_feature_sizes = target_feature_sizes  # [(C, H, W)]
        self.translator_hidden_size = translator_hidden_size  # C
        self.target_model_names = list(target_feature_sizes.keys())
        self.legit_target_model_name_map: dict[str, str] = {t: t.replace(".", "_") for t in self.target_model_names}
        self.translator_heads: nn.ModuleDict = None

        self.backbone_adapter = nn.Sequential(
            nn.LayerNorm(self.backbone_feature_size[0]),  # do a pre-norm
            nn.Linear(
                self.backbone_feature_size[0],  # C in [C,H,W]
                self.translator_hidden_size,
            ),
        )
        self.translator_stem: nn.Module = nn.Identity()
        self.build_translator_heads()

    def build_translator_heads(self) -> None:
        """Build translator heads to match the dimension of each target feature set.

        Example:
            translator_heads: dict[str, nn.Module] = ...
            self.translator_heads = nn.ModuleDict(translator_heads)
        """
        raise NotImplementedError("build_translator_heads() should be overridden")

    def forward(
        self, x: torch.Tensor, target_model_names: Optional[list[str]] = None, backbone_no_cls: bool = False
    ) -> torch.Tensor:
        """Forward pass for a base feature translator.

        Args:
            x (torch.Tensor): input features from the backbone. [B, (1)+H*W, C].
                (1) means optional CLS token. If `backbone_no_cls==True`, then [B, H*W, C].
            target_model_names (Optional[list[str]]): names of the target models.
            backbone_no_cls (bool): indicate backbone has cls token or not.
                Can use it to customize whether to drop cls.

        Returns:
            dict[str, torch.Tensor]: predicted features for target models.
        """
        # x: [B, (1)+H*W, C]
        x = self.backbone_adapter(x)  
        x = self.translator_stem(x) 
        target_model_names = target_model_names if target_model_names is not None else self.target_model_names
        features = {t: self.translator_heads[self.legit_target_model_name_map[t]](x, backbone_no_cls=backbone_no_cls) for t in target_model_names}
        return features


class MLPFeatureTranslator(FeatureTranslator):
    def __init__(
        self,
        backbone_feature_size: torch.Size,
        target_feature_sizes: dict[str, torch.Size | tuple[int, ...]],
        translator_hidden_size: int = 1024,
        translator_n_layer: int = 3,
    ) -> None:
        """Initalization function for MLPFeatureTranslator.

        Args:
            backbone_feature_size (torch.Size): the size of features of the backbone.
            target_feature_sizes (dict[str, torch.Size  |  tuple[int, ...]]): the sizes of features of target models.
            translator_hidden_size (Optional[int]): the hidden dim of the translator. Defaults to 2048.
            translator_n_layer (int): number of MLP layers. Defaults to 3.
        """
        self.translator_n_layer = translator_n_layer

        super().__init__(
            backbone_feature_size=backbone_feature_size,
            target_feature_sizes=target_feature_sizes,
            translator_hidden_size=translator_hidden_size,
        )

    def build_translator_heads(self) -> nn.ModuleDict:
        """Build MLP translator heads to match the dimension of each target feature set."""
        translator_heads = {}
        source_size = (self.translator_hidden_size, *self.backbone_feature_size[1:])
        for target_model, target_size in self.target_feature_sizes.items():
            head = MLPAdapterHead(source_size=source_size, target_size=target_size, num_layer=self.translator_n_layer)
            translator_heads[self.legit_target_model_name_map[target_model]] = head
        self.translator_heads = nn.ModuleDict(translator_heads)


class ConvFeatureTranslator(FeatureTranslator):
    def __init__(
        self,
        backbone_feature_size: torch.Size,
        target_feature_sizes: dict[str, torch.Size | tuple[int, ...]],
        translator_hidden_size: int = 1024,
    ) -> None:
        """Initalization function for ConvFeatureTranslator.

        Args:
            backbone_feature_size (torch.Size): the size of features of the backbone.
            target_feature_sizes (dict[str, torch.Size  |  tuple[int, ...]]): the sizes of features of target models.
            translator_hidden_size (Optional[int]): the hidden dim of the translator. Defaults to 2048.
        """
        super().__init__(
            backbone_feature_size=backbone_feature_size,
            target_feature_sizes=target_feature_sizes,
            translator_hidden_size=translator_hidden_size,
        )

    def build_translator_heads(self) -> nn.ModuleDict:
        """Build translator heads to match the dimension of each target feature set.

        Returns:
            nn.ModuleDict: the translator heads.
        """
        translator_heads = {}
        source_size = (self.translator_hidden_size, *self.backbone_feature_size[1:])
        for target_model, target_size in self.target_feature_sizes.items():
            head = ConvAdapterHead(source_size=source_size, target_size=target_size)
            translator_heads[self.legit_target_model_name_map[target_model]] = head
        self.translator_heads = nn.ModuleDict(translator_heads)


class LightConvFeatureTranslator(FeatureTranslator):
    def __init__(
        self,
        backbone_feature_size: torch.Size,
        target_feature_sizes: dict[str, torch.Size | tuple[int, ...]],
        translator_hidden_size: int = 1024,
        hidden_size_factor: int | float = 1.0,
    ) -> None:
        """Initalization function for LightConvFeatureTranslator.
            It's for a smaller translator compared to ConvFeatureTranslator.

        Args:
            backbone_feature_size (torch.Size): the size of features of the backbone.
            target_feature_sizes (dict[str, torch.Size  |  tuple[int, ...]]): the sizes of features of target models.
            translator_hidden_size (Optional[int]): the hidden dim of the translator. Defaults to 1024.
            hidden_size_factor: the size of hidden dim of feature translator
                as a factor of input feature hidden dim. Defaults to 1.0
        """
        self.hidden_size_factor = hidden_size_factor
        super().__init__(
            backbone_feature_size=backbone_feature_size,
            target_feature_sizes=target_feature_sizes,
            translator_hidden_size=translator_hidden_size,
        )
        self.backbone_adapter = nn.Identity()

    def build_translator_heads(self) -> nn.ModuleDict:
        """Build translator heads to match the dimension of each target feature set.

        Returns:
            nn.ModuleDict: the translator heads.
        """
        translator_heads = {}
        for target_model, target_size in self.target_feature_sizes.items():
            if "_cls" in target_model:
                head = LinearAdapterHead(
                    source_size=self.backbone_feature_size,
                    target_size=target_size
                )
            else:
                head = LightConvAdapterHead(
                    source_size=self.backbone_feature_size, 
                    target_size=target_size, 
                    hidden_size_factor=self.hidden_size_factor
                )
            translator_heads[self.legit_target_model_name_map[target_model]] = head
        self.translator_heads = nn.ModuleDict(translator_heads)


class TransformerFreatureTranslator(FeatureTranslator):
    def __init__(
        self,
        backbone_feature_size: torch.Size,
        target_feature_sizes: dict[str, torch.Size | tuple[int, int]],
        translator_hidden_size: int = 1024,
        translator_n_layers: int = 2,
        translator_n_heads: int = 8,
        translator_activation: str = "gelu",
    ) -> None:
        super().__init__(
            backbone_feature_size=backbone_feature_size,
            target_feature_sizes=target_feature_sizes,
            translator_hidden_size=translator_hidden_size,
        )

        self.translator_stem = nn.TransformerDecoder(
            nn.TransformerDecoderLayer(
                d_model=translator_hidden_size,
                nhead=translator_n_heads,
                dim_feedforward=translator_hidden_size * 2,
                activation=translator_activation,
                batch_first=True,
                norm_first=True,
            ),
            num_layers=translator_n_layers,
        )

        self.decode_tokens = nn.Parameter(
            torch.randn((1, math.prod(self.backbone_feature_size[1:]), translator_hidden_size))
        )

        self.target_model_emb = nn.ParameterDict(
            {
                self.legit_target_model_name_map[t]: torch.randn(1, 1, translator_hidden_size)
                for t in self.target_model_names
            }
        )

    def build_translator_heads(self) -> None:
        """Build Transformer translator heads to match the dimension of each target feature set."""
        translator_heads = {}
        for target_model, target_size in self.target_feature_sizes.items():
            head = MLPAdapterHead(
                source_size=(self.translator_hidden_size, *self.backbone_feature_size[1:]),
                target_size=target_size,
                num_layer=2,
            )
            translator_heads[self.legit_target_model_name_map[target_model]] = head
        self.translator_heads = nn.ModuleDict(translator_heads)

    def forward(
        self, x: torch.Tensor, target_model_names: Optional[list[str]] = None, backbone_no_cls: bool = False
    ) -> torch.Tensor:
        """Forward pass for a simple linear translator.

        Args:
            x (torch.Tensor): input features from the backbone.
            target_model_names (Optional[str]): names of the target models.
            backbone_no_cls (bool): indicate backbone has cls token or not.
                Can use it to customize whether to drop cls.

        Returns:
            dict[str, torch.Tensor]: predicted features for target models.
        """
        if not backbone_no_cls:
            x = x[:, 1:]
        x = self.backbone_adapter(x)
        features = {}
        target_model_names = target_model_names if target_model_names is not None else self.target_model_names
        for t in target_model_names:
            feature = self.translator_stem(
                torch.cat(
                    [
                        self.decode_tokens.repeat(x.size(0), 1, 1),
                        self.target_model_emb[self.legit_target_model_name_map[t]].repeat(x.size(0), 1, 1),
                    ],
                    dim=1,
                ),
                memory=x,
            )[:, 1:, ...]
            features[t] = self.translator_heads[self.legit_target_model_name_map[t]](feature)
        return features


def build_feature_translator(translator_type: str, **kwargs: Any) -> FeatureTranslator:
    """Handy function to build feature translators given the type

    Args:
        translator_type (str): the type of the translator,
            one in `"mlp"`, `"conv"`, `"lconv"`, `"transformer"` (or `"trans"`).
            At the moment we are actively using `"lconv"`.

    Returns:
        FeatureTranslator: the corresponding FeatureTranslator
    """
    if translator_type == "mlp":
        return MLPFeatureTranslator(**kwargs)
    elif translator_type == "conv":
        return ConvFeatureTranslator(**kwargs)
    elif translator_type == "lconv":
        return LightConvFeatureTranslator(**kwargs)
    elif translator_type == "transformer" or translator_type == "trans":
        return TransformerFreatureTranslator(**kwargs)
    else:
        raise NotImplementedError(f"Requested {translator_type} is not implemented yet.")


class TheiaConfig(PretrainedConfig):
    def __init__(
        self,
        backbone: str | nn.Module = "facebook/deit-tiny-patch16-224",
        pretrained: bool = False,
        target_feature_sizes: Optional[dict[str, torch.Size | tuple[int, ...]]] = None,
        translator_type: str = "lconv",
        translator_hidden_size_factor: float | int = 1.0,
        target_loss_weights: Optional[dict[str, float]] = None,
        feature_reduce_method: Optional[str] = None,
        feature_neck: bool = False,
        feature_neck_hidden_dim: int = 256,
        forward_neck: bool = False,
        feature_neck_nonlinearity: str = "relu",
        iamge_size: int = 224,
        num_reg_tokens: int = 0,
        **kwargs: Any
    ):
        self.backbone = backbone
        self.pretrained = pretrained
        self.target_feature_sizes = target_feature_sizes
        self.translator_type = translator_type
        self.translator_hidden_size_factor = translator_hidden_size_factor
        self.target_loss_weights = target_loss_weights
        self.feature_reduce_method = feature_reduce_method
        self.feature_neck = feature_neck
        self.feature_neck_hidden_dim = feature_neck_hidden_dim
        self.forward_neck = forward_neck
        self.feature_neck_nonlinearity = feature_neck_nonlinearity
        self.image_size = 224
        self.num_reg_tokens = num_reg_tokens
        super().__init__(**kwargs)

class TheiaModel(PreTrainedModel):
    config_class = TheiaConfig

    def __init__(self, config: TheiaConfig):
        super().__init__(config)

        self.target_feature_sizes = config.target_feature_sizes
        self.preprocessor = None
        self.pretrained = config.pretrained

        # backbone
        self.image_size = config.image_size
        if "reg" in config.backbone:
            self.backbone: nn.Module = build_backbone(config.backbone, config.pretrained, image_size=config.image_size, num_reg_tokens = config.num_reg_tokens)
        else:
            self.backbone: nn.Module = build_backbone(config.backbone, config.pretrained, image_size=config.image_size)

        # handle output feature (feature reduce)
        self.feature_reduce_method = config.feature_reduce_method
        self.no_cls = hasattr(self.backbone, "no_cls")
        self.num_reg_tokens = self.backbone.num_reg_tokens if hasattr(self.backbone, "num_reg_tokens") else 0

        # translator
        backbone_feature_size = self.backbone.get_feature_size(keep_spatial=True)
        if self.target_feature_sizes:
            translator_kwargs = {
                "hidden_size_factor": config.translator_hidden_size_factor
            }
            translator_kwargs["backbone_feature_size"] = backbone_feature_size
            translator_kwargs["target_feature_sizes"] = config.target_feature_sizes
            self.translator = build_feature_translator(
                config.translator_type, **translator_kwargs
            )
        else:
            self.translator = None

        self.feature_neck = config.feature_neck
        self.feature_neck_hidden_dim = config.feature_neck_hidden_dim
        self.forward_neck = config.forward_neck
        if self.feature_neck:
            num_tokens_edge = self.backbone.model.config.image_size // self.backbone.model.config.patch_size
            self.neck = nn.Sequential(
                Rearrange("b (h w) c -> b c h w", h=num_tokens_edge, w=num_tokens_edge),
                nn.Conv2d(self.backbone.model.config.hidden_size, self.feature_neck_hidden_dim, kernel_size=4, stride=2, padding=1), #14x14 -> 7x7
                nn.ReLU() if config.feature_neck_nonlinearity == 'relu' else nn.Tanh(), # just to keep the same as super class
                nn.Conv2d(self.feature_neck_hidden_dim, self.feature_neck_hidden_dim, kernel_size=3, stride=2), #7x7 -> 3x3
                nn.ReLU() if config.feature_neck_nonlinearity == 'relu' else nn.Tanh(),
                nn.Conv2d(self.feature_neck_hidden_dim, self.feature_neck_hidden_dim, kernel_size=3, stride=1), #3x3 -> 1x1
                nn.ReLU() if config.feature_neck_nonlinearity == 'relu' else nn.Tanh(),
                nn.Flatten()
            )
        else:
            self.neck = None

        # loss
        self.mse_loss = nn.MSELoss()
        self.l1_loss = nn.SmoothL1Loss()
        self.cos_loss = nn.CosineEmbeddingLoss()
        self.cos_target = torch.ones((1), dtype=torch.int, requires_grad=False)
        self.target_loss_weights = config.target_loss_weights

    def load_pretrained_weights(self, checkpoint_path: str) -> None:
        """
        Load weights from `checkpoint_path` manually.

        Args:
            checkpoint_path (str): path to the weights.
        """
        # load theia weights
        if checkpoint_path:
            weights_dict = torch.load(checkpoint_path, map_location="cpu")
            # Filter out unnecessary keys
            pretrained_dict = {k: v for k, v in weights_dict.items() if k in self.state_dict()}
            self.load_state_dict(pretrained_dict, strict=False)

    def freeze_translator(self) -> None:
        """Freeze feature translators `self.translator`."""
        if self.translator is not None:
            for param in self.translator.parameters():
                param.requires_grad = False

    def freeze_backbone(self) -> None:
        """Freeze backbone (encoder) `self.backbone`. """
        self.freeze_encoder()

    def freeze_encoder(self) -> None:
        """Freeze backbone (encoder) `self.backbone`. """
        for param in self.backbone.parameters():
            param.requires_grad = False

    def freeze_neck(self) -> None:
        """Freeze feature neck `self.neck`."""
        if self.neck is not None:
            for param in self.neck.parameters():
                param.requires_grad = False
    
    def freeze_everything(self) -> None:
        """Freeze all parameters in the model."""
        self.freeze_translator()
        self.freeze_neck()
        self.freeze_encoder()

    def unfreeze_translator(self) -> None:
        if self.translator is not None:
            for param in self.translator.parameters():
                param.requires_grad = True

    def unfreeze_backbone(self) -> None:
        "Set parameters in backbone (encoder) `self.backbone` trainable."
        self.unfreeze_encoder()

    def unfreeze_encoder(self) -> None:
        "Set parameters in backbone (encoder) `self.backbone` trainable."
        for param in self.backbone.parameters():
            param.requires_grad = True

    def unfreeze_neck(self) -> None:
        "Set parameters in feature neck `self.neck` trainable."
        if self.neck is not None:
            for param in self.neck.parameters():
                param.requires_grad = True
    
    def unfreeze_everything(self) -> None:
        """Set all parameters trainable."""
        self.unfreeze_translator()
        self.unfreeze_neck()
        self.unfreeze_encoder()

    def set_forward_neck(self, forward_neck: bool = True) -> None:
        """
        Set `self.forward_neck` to `forward_neck` value.

        Args:
            forward_neck (bool): whether forward the feature through the random initialized neck.
                If set to True, the output from `self.forward()` will be in shape [batch_size, self.config.feature_neck_hidden_dim]
        """
        self.forward_neck = forward_neck

    def forward_feature(self, x: torch.Tensor, **kwargs: Any) -> torch.Tensor:
        """Forward RVFM feature only (before translators).

        Args:
            x (torch.Tensor): input image. By default it accepts images 
                in shape [B, H, W, C] or [B, C, H, W], pixel range [0,255], torch.uint8.
            kwargs (Any): kwargs including mainly those for huggingface preprocessor:
                `do_resize` (bool) defaults to True.
                `interpolate_pos_encoding` (Optional[bool]) defaults to None.
                `do_rescale` (bool) defaults to True.
                `do_normalize` (bool) defaults to True.

        Returns:
            torch.Tensor: RVFM feature.
        """
        feature = self.backbone(x, **kwargs)
        # [B, 1+H*W+N, C] if including both CLS and register tokens.
        # [B, 1+H*W, C] for standard model (N=0).
        # [B, H*W, C] for model without CLS.
        return handle_feature_output(feature, num_discard_tokens=self.num_reg_tokens)

    def forward(self, x: torch.Tensor, target_model_names: Optional[list[str]] = None, **kwargs: Any) -> dict[str, torch.Tensor] | torch.Tensor:
        """Forward pass of Robot Vision Foundation Model.

       Args:
            x (torch.Tensor): input image. By default it accepts images 
                in shape [B, H, W, C] or [B, C, H, W], pixel range [0,255], torch.uint8.
            target_model_names (Optional[list[str]]): names of the target foundation models.
            kwargs (Any): kwargs including mainly those for huggingface preprocessor:
                `do_resize` (bool) defaults to True.
                `interpolate_pos_encoding` (Optional[bool]) defaults to None.
                `do_rescale` (bool) defaults to True.
                `do_normalize` (bool) defaults to True.

        Returns:
        if `self.forward_neck`:
            torch.Tensor: compact vector feature passed through the neck. [B, C_neck]
        else:
            dict[str, torch.Tensor]: features that match to each foundation model.
                Each feature is in [B, (H*W), C] or [B, C].
        """
        if self.forward_neck:
            x = self.forward_feature(x)
            return self.neck(x)
        else:
            x = self.backbone(x, **kwargs)
            if self.num_reg_tokens > 0:
                x = x[:, :-self.num_reg_tokens]  # [B, (1)+H*W, C]
            features = self.translator(x, target_model_names, backbone_no_cls=self.no_cls)  # each is [B, H*W, C] or [B, C]
            return features

    def get_loss(self, pred_features: dict[str, torch.Tensor], y: dict[str, torch.Tensor]) -> dict[str, Any]:
        """Get loss terms given predictions and targets.

        Args:
            pred_features (dict[str, torch.Tensor]): predictions.
            y (dict[str, torch.Tensor]): targets.

        Returns:
            tuple[Any, ...]: loss terms
        """
        mse_loss_avg, cos_loss_avg, l1_loss_avg = 0, 0, 0
        mse_losses_per_model = {}
        cos_losses_per_model = {}
        l1_losses_per_model = {}

        for t in pred_features:
            pred = pred_features[t]
            target = y[t]

            # mse loss
            mse_loss = self.mse_loss(pred, target)
            weight = self.target_loss_weights if self.target_loss_weights else 1.0 / len(pred_features)

            # l1 loss
            l1_loss = self.l1_loss(pred, target)

            # cos loss
            pred_norm = F.normalize(pred.flatten(start_dim=1), dim=1, p=2)
            target_norm = F.normalize(target.flatten(start_dim=1), dim=1, p=2)
            target = self.cos_target.repeat(pred.size(0)).to(pred.device)
            cos_loss = self.cos_loss(pred_norm, target_norm, target)

            mse_loss_avg += mse_loss * weight
            cos_loss_avg += cos_loss / len(pred_features)  # balance cos by default for meaningful eval
            l1_loss_avg += l1_loss * weight

            mse_losses_per_model[t] = mse_loss.item()
            cos_losses_per_model[t] = cos_loss.item()
            l1_losses_per_model[t] = l1_loss.item()

        return {
            "mse_loss": mse_loss_avg,
            "cos_loss": cos_loss_avg,
            "l1_loss": l1_loss_avg,
            "mse_losses_per_model": mse_losses_per_model,
            "cos_losses_per_model": cos_losses_per_model,
            "l1_losses_per_model": l1_losses_per_model,
        }