File size: 2,001 Bytes
bddf938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
base_model: cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: sentiment_analysis_model_rpsi
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/themohal/huggingface/runs/ddp65niu)
# sentiment_analysis_model_rpsi

This model is a fine-tuned version of [cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual](https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5686
- Accuracy: 0.8018

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.7314        | 1.0   | 3378  | 0.6028          | 0.7367   |
| 0.563         | 2.0   | 6756  | 0.5503          | 0.7646   |
| 0.4859        | 3.0   | 10134 | 0.5316          | 0.7847   |
| 0.421         | 4.0   | 13512 | 0.5223          | 0.7954   |
| 0.3668        | 5.0   | 16890 | 0.5514          | 0.7973   |
| 0.3266        | 6.0   | 20268 | 0.5686          | 0.8018   |


### Framework versions

- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.19.1