File size: 18,672 Bytes
d139aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
import json
import logging
import os
from typing import Dict, List, Optional, Union

import numpy as np
import torch
import torch.multiprocessing as mp
from peft import PeftModel
from torch import Tensor, device, nn
from tqdm.autonotebook import tqdm, trange
from transformers import (
    AutoModel,
    AutoConfig,
    PretrainedConfig,
    PreTrainedModel,
    AutoTokenizer,
    LlamaConfig,
    MistralConfig,
    GemmaConfig,
    Qwen2Config,
)

logger = logging.getLogger(__name__)


def batch_to_device(batch, target_device: device):
    """
    send a pytorch batch to a device (CPU/GPU)
    """
    for key in batch:
        if isinstance(batch[key], Tensor):
            batch[key] = batch[key].to(target_device)
    return batch


class LLMEncoderConfig(PretrainedConfig):
    def __init__(
        self,
        pooling_mode: str = "weighted_mean",
        max_length: int = 512,
        doc_max_length: int = 400,
        skip_instruction: bool = True,
        **kwargs,
    ):
        if pooling_mode not in ["mean", "weighted_mean", "eos_token", "bos_token"]:
            raise ValueError(
                (f"Pooling mode {pooling_mode} is not supported.",
                "Please choose one of 'mean', 'weighted_mean', 'eos_token', 'bos_token'.")
            )
        self.pooling_mode = pooling_mode
        self.max_length = max_length
        self.doc_max_length = doc_max_length
        self.skip_instruction = skip_instruction
        self.model_config = None
        self.base_model = None
        
        super().__init__(**kwargs)

class LLMEncoder(PreTrainedModel):
    config_class = LLMEncoderConfig
    
    def __init__(
        self,
        model: PreTrainedModel,
        tokenizer: AutoTokenizer,
        config: LLMEncoderConfig
    ):
        super().__init__(config)
        self.model = model
        self.tokenizer = tokenizer
        self.pooling_mode = config.pooling_mode
        self.max_length = config.max_length
        self.doc_max_length = config.doc_max_length
        self.skip_instruction = config.skip_instruction
        self.model_config = None

    @classmethod
    def from_pretrained(
        self,
        base_model_name_or_path,
        peft_model_name_or_path=None,
        config=None,
        **kwargs,
    ):
        """
        Load a pretrained model from a model identifier or path.
        Args:
            base_model_name_or_path: Model identifier or path to pretrained model.
            peft_model_name_or_path: Path to any PEFT models to apply.
        Returns: L3Prune model.
        """
        
        if not config:
            config = LLMEncoderConfig()
        
        if not config.base_model:
            config.base_model = base_model_name_or_path
        
        tokenizer = AutoTokenizer.from_pretrained(base_model_name_or_path)
        tokenizer.pad_token = tokenizer.eos_token
        tokenizer.padding_side = "left"
 
        if config.model_config:
            model_config = AutoConfig.from_pretrained(config.base_model)
            model_config = model_config.from_dict(config.model_config) 
        else:
            model_config = AutoConfig.from_pretrained(base_model_name_or_path)
            config.model_config = model_config
            
        model = AutoModel.from_pretrained(base_model_name_or_path, config=model_config, **kwargs)
        

        if peft_model_name_or_path is not None:
            model = PeftModel.from_pretrained(
                model,
                peft_model_name_or_path,
            )
            model = model.merge_and_unload()

        return self(model=model, tokenizer=tokenizer, config=config)

    def prune(self, percent_prune=0):
        """
        Prune a model to a percentage of layers of the base model. If percent_prune is equal to or greater than 1, 
        it is taken as the specific layer number to prune to. For example, if percent_prune=0.3, 30% of the layers will be pruned. If
        percent_prune=3, the model will be pruned to 3 layers.
        """
        # take it as the specific layer number to prune to
        if percent_prune >= 1:
            new_num_layers = int(percent_prune)
        else:
            new_num_layers = int(self.model.config.num_hidden_layers * (1 - percent_prune))
        print(f"Pruning to {new_num_layers} layer.")
        self.model.layers = self.model.layers[:new_num_layers]
        self.model.config.num_hidden_layers = new_num_layers
        self.config.model_config.num_hidden_layers = new_num_layers
    
    def prepare_for_tokenization(self, text):
        if self.model.config._name_or_path == "meta-llama/Meta-Llama-3-8B-Instruct":
            text = (
                "<|start_header_id|>user<|end_header_id|>\n\n"
                + text.strip()
                + "<|eot_id|>"
            )
            return text
        if self.model.config._name_or_path in [
            "mistralai/Mistral-7B-Instruct-v0.2",
            "meta-llama/Llama-2-7b-chat-hf",
        ]:
            text = "[INST] " + text.strip() + " [/INST]"
        if self.model.config._name_or_path in [
            "google/gemma-2-9b-it",
        ]:
            text = "<bos><start_of_turn>user\n" + text.strip() + "<end_of_turn>"
        if self.model.config._name_or_path in [
            "Qwen/Qwen2-1.5B-Instruct",
            "Qwen/Qwen2-7B-Instruct",
        ]:
            text = "<|im_start|>user\n" + text.strip() + "<|im_end|>"
        if self.pooling_mode == "eos_token":
            if self.model.config._name_or_path == "meta-llama/Meta-Llama-3-8B":
                text = text.strip() + "<|end_of_text|>"
            elif isinstance(self.model.config, LlamaConfig) or isinstance(
                self.model.config, MistralConfig
            ):
                text = text.strip() + " </s>"
            elif isinstance(self.model.config, GemmaConfig):
                text = text.strip() + "<eos>"
            elif isinstance(self.model.config, Qwen2Config):
                text = text.strip() + "<|endoftext|>"
        return text

    def tokenize(self, texts):
        texts_2 = []
        original_texts = []
        for text in texts:
            t = text.split("!@#$%^&*()")
            texts_2.append(t[1] if len(t) > 1 else "")
            original_texts.append("".join(t))

        original = self.tokenizer(
            original_texts,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=self.max_length,
        )
        embed_mask = None
        for t_i, t in enumerate(texts_2):
            ids = self.tokenizer(
                [t],
                return_tensors="pt",
                padding=True,
                truncation=True,
                max_length=self.max_length,
                add_special_tokens=False,
            )
            if embed_mask is None:
                e_m = torch.zeros_like(original["attention_mask"][t_i])
                if len(ids["input_ids"][0]) > 0:
                    e_m[-len(ids["input_ids"][0]) :] = torch.ones(
                        len(ids["input_ids"][0])
                    )
                embed_mask = e_m.unsqueeze(0)
            else:
                e_m = torch.zeros_like(original["attention_mask"][t_i])
                if len(ids["input_ids"][0]) > 0:
                    e_m[-len(ids["input_ids"][0]) :] = torch.ones(
                        len(ids["input_ids"][0])
                    )
                embed_mask = torch.cat((embed_mask, e_m.unsqueeze(0)), dim=0)

        original["embed_mask"] = embed_mask
        return original

    def _skip_instruction(self, sentence_feature):
        assert (
            sentence_feature["attention_mask"].shape
            == sentence_feature["embed_mask"].shape
        )
        sentence_feature["attention_mask"] = sentence_feature["embed_mask"]

    def forward(self, sentence_feature: Dict[str, Tensor]):
        embed_mask = None
        if "embed_mask" in sentence_feature:
            embed_mask = sentence_feature.pop("embed_mask")
        reps = self.model(**sentence_feature)
        sentence_feature["embed_mask"] = embed_mask

        return self.get_pooling(sentence_feature, reps.last_hidden_state)

    def get_pooling(self, features, last_hidden_states):  # All models padded from left
        assert (
            self.tokenizer.padding_side == "left"
        ), "Pooling modes are implemented for padding from left."
        if self.skip_instruction:
            self._skip_instruction(features)
        seq_lengths = features["attention_mask"].sum(dim=-1)
        if self.pooling_mode == "mean":
            return torch.stack(
                [
                    last_hidden_states[i, -length:, :].mean(dim=0)
                    for i, length in enumerate(seq_lengths)
                ],
                dim=0,
            )
        elif self.pooling_mode == "weighted_mean":
            bs, l, _ = last_hidden_states.shape
            complete_weights = torch.zeros(bs, l, device=last_hidden_states.device)
            for i, seq_l in enumerate(seq_lengths):
                if seq_l > 0:
                    complete_weights[i, -seq_l:] = torch.arange(seq_l) + 1
                    complete_weights[i] /= torch.clamp(
                        complete_weights[i].sum(), min=1e-9
                    )
            return torch.sum(last_hidden_states * complete_weights.unsqueeze(-1), dim=1)
        elif self.pooling_mode == "eos_token" or self.pooling_mode == "last_token":
            return last_hidden_states[:, -1]
        elif self.pooling_mode == "bos_token":
            return last_hidden_states[
                features["input_ids"] == self.tokenizer.bos_token_id
            ]
        else:
            raise ValueError(f"{self.pooling_mode} is not implemented yet.")

    def _convert_to_str(self, instruction, text):
        tokenized_q = self.tokenizer(
            text,
            return_tensors="pt",
            padding=True,
            truncation=True,
            max_length=self.max_length,
            add_special_tokens=False,
        )
        tokenized_q_length = len(tokenized_q["input_ids"][0])

        while tokenized_q_length > self.doc_max_length:
            reduction_ratio = self.doc_max_length / tokenized_q_length
            reduced_length = int(len(text.split()) * reduction_ratio)
            text = " ".join(text.split()[:reduced_length])
            tokenized_q = self.tokenizer(
                text,
                return_tensors="pt",
                padding=True,
                truncation=True,
                max_length=self.max_length,
                add_special_tokens=False,
            )
            tokenized_q_length = len(tokenized_q["input_ids"][0])

        return (
            f"{instruction.strip()} !@#$%^&*(){text}"
            if instruction
            else f"!@#$%^&*(){text}"
        )

    def encode(
        self,
        sentences: Union[str, List[str]],
        batch_size: int = 32,
        show_progress_bar: bool = True,
        convert_to_numpy: bool = False,
        convert_to_tensor: bool = False,
        device: Optional[str] = None,
    ):
        """
        Encode a list of sentences to their respective embeddings. The sentences can be a list of strings or a string.
        Args:
            sentences: sentence or sentences to encode.
            batch_size: batch size for turning sentence tokens into embeddings.
            show_progress_bar: whether to show progress bars during encoding steps.
            convert_to_numpy: If true, return numpy arrays instead of torch tensors.
            convert_to_tensor: If true, return torch tensors (default).
            device: torch backend device identifier (e.g., 'cuda', 'cpu','mps' etc.). If not specified,
            the default is to use cuda when available, otherwise cpu. Note that only the choice of 'cuda' supports
            multiprocessing as currently implemented.

        Returns: embeddings of the sentences. Embeddings are detached and always on the CPU (see _encode implementation).

        """
        if isinstance(sentences[0], str) and isinstance(sentences[-1], int):
            sentences = [sentences]
        # required for MEDI version of MTEB
        if isinstance(sentences[0], str):
            sentences = [[""] + [sentence] for sentence in sentences]

        if device is None:
            device = "cuda" if torch.cuda.is_available() else "cpu"

        concatenated_input_texts = []
        for sentence in sentences:
            assert isinstance(sentence[0], str)
            assert isinstance(sentence[1], str)
            concatenated_input_texts.append(
                self._convert_to_str(sentence[0], sentence[1])
            )
        sentences = concatenated_input_texts

        self.eval()

        if convert_to_tensor:
            convert_to_numpy = False

        length_sorted_idx = np.argsort([-self._text_length(sen) for sen in sentences])
        sentences_sorted = [sentences[idx] for idx in length_sorted_idx]
        all_embeddings = []

        if torch.cuda.device_count() <= 1:
            # This branch also support mps devices
            self.to(device)
            for start_index in trange(
                0,
                len(sentences),
                batch_size,
                desc="Batches",
                disable=not show_progress_bar,
            ):
                sentences_batch = sentences_sorted[
                    start_index : start_index + batch_size
                ]
                embeddings = self._encode(
                    sentences_batch, device=device, convert_to_numpy=convert_to_numpy
                )
                all_embeddings.append(embeddings)
        else:

            num_proc = torch.cuda.device_count()
            cuda_compatible_multiprocess = mp.get_context("spawn")
            with cuda_compatible_multiprocess.Pool(num_proc) as p:
                sentences_batches = [
                    sentences_sorted[start_index : start_index + batch_size]
                    for start_index in range(0, len(sentences), batch_size)
                ]

                progress_bar = tqdm(
                    total=len(sentences_batches),
                    desc="Batches",
                    disable=not show_progress_bar,
                )
                results = []

                def update(*args):
                    progress_bar.update()

                for batch in sentences_batches:
                    results.append(
                        p.apply_async(
                            self._encode,
                            args=(batch, None, convert_to_numpy, True),
                            callback=update,
                        )
                    )

                all_embeddings = [result.get() for result in results]
                progress_bar.close()

        all_embeddings = torch.cat(all_embeddings, dim=0)
        all_embeddings = all_embeddings[np.argsort(length_sorted_idx)]
        all_embeddings = all_embeddings.to(torch.float32)
        if convert_to_numpy:
            all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
        return all_embeddings

    def save(self, output_path, merge_before_save=False, save_config=True):
        if merge_before_save and isinstance(self.model, PeftModel):
            self.model = self.model.merge_and_unload()
            if hasattr(self.model, "_hf_peft_config_loaded"):
                self.model._hf_peft_config_loaded = False

        self.model.save_pretrained(output_path)
        self.tokenizer.save_pretrained(output_path)

        l3prune_config = {
            "pooling_mode": self.pooling_mode,
            "max_length": self.max_length,
            "doc_max_length": self.doc_max_length,
            "skip_instruction": self.skip_instruction,
        }

        if save_config:
            os.makedirs(output_path, exist_ok=True)
            with open(f"{output_path}/l3prune_config.json", "w") as fOut:
                json.dump(l3prune_config, fOut, indent=4)

    def _encode(
        self,
        sentences_batch,
        device: Optional[str] = None,
        convert_to_numpy: bool = False,
        multiprocessing=False,
    ):
        if multiprocessing:
            # multiprocessing only supports CUDA devices at this time, so we ignore the value of device
            # and use cuda:rank for the device
            rank = mp.current_process()._identity[0]
            if device is None and torch.cuda.is_available():
                device = f"cuda:{rank % torch.cuda.device_count()}"

        self.to(device)
        features = self.tokenize(
            [self.prepare_for_tokenization(sentence) for sentence in sentences_batch]
        )
        features = batch_to_device(features, device)

        with torch.no_grad():
            embeddings = self.forward(features)
            embeddings = embeddings.detach()
            embeddings = embeddings.cpu()

        return embeddings

    def _text_length(self, text: Union[List[int], List[List[int]]]):
        """
        Help function to get the length for the input text. Text can be either a string (which means a single text)
        a list of ints (which means a single tokenized text), or a tuple of list of ints
        (representing several text inputs to the model).
        """
        if (
            isinstance(text, str)
            or (isinstance(text, list) and isinstance(text[0], int))
            or len(text) == 0
        ):  # Single text, list of ints, or empty
            return len(text)
        if isinstance(text, dict):  # {key: value} case
            return len(next(iter(text.values())))
        elif not hasattr(text, "__len__"):  # Object has no len() method
            return 1
        else:
            return sum([len(t) for t in text])

    def resize_token_embeddings(
        self,
        new_num_tokens: Optional[int] = None,
        pad_to_multiple_of: Optional[int] = None,
    ) -> nn.Embedding:
        return self.model.resize_token_embeddings(
            new_num_tokens=new_num_tokens, pad_to_multiple_of=pad_to_multiple_of
        )

    def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
        self.model.gradient_checkpointing_enable(
            gradient_checkpointing_kwargs=gradient_checkpointing_kwargs
        )
    
    def save_pretrained(self, save_directory, **kwargs):
        self.tokenizer.save_pretrained(save_directory, **kwargs)
        super().save_pretrained(save_directory, **kwargs)
    
    def push_to_hub(self, repo_id, **kwargs):
        self.tokenizer.push_to_hub(repo_id, **kwargs)
        super().push_to_hub(repo_id, **kwargs)