Upload LLMEncoder
Browse files- config.json +103 -0
- llmencoder.py +492 -0
- model.safetensors +3 -0
config.json
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LLMEncoder"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "llmencoder.LLMEncoderConfig",
|
7 |
+
"AutoModel": "llmencoder.LLMEncoder"
|
8 |
+
},
|
9 |
+
"base_model": "microsoft/Phi-3-mini-4k-instruct",
|
10 |
+
"doc_max_length": 400,
|
11 |
+
"model_config": {
|
12 |
+
"_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
|
13 |
+
"add_cross_attention": false,
|
14 |
+
"architectures": [
|
15 |
+
"Phi3ForCausalLM"
|
16 |
+
],
|
17 |
+
"attention_bias": false,
|
18 |
+
"attention_dropout": 0.0,
|
19 |
+
"auto_map": {
|
20 |
+
"AutoConfig": "microsoft/Phi-3-mini-4k-instruct--configuration_phi3.Phi3Config",
|
21 |
+
"AutoModelForCausalLM": "microsoft/Phi-3-mini-4k-instruct--modeling_phi3.Phi3ForCausalLM"
|
22 |
+
},
|
23 |
+
"bad_words_ids": null,
|
24 |
+
"begin_suppress_tokens": null,
|
25 |
+
"bos_token_id": 1,
|
26 |
+
"chunk_size_feed_forward": 0,
|
27 |
+
"cross_attention_hidden_size": null,
|
28 |
+
"decoder_start_token_id": null,
|
29 |
+
"diversity_penalty": 0.0,
|
30 |
+
"do_sample": false,
|
31 |
+
"early_stopping": false,
|
32 |
+
"embd_pdrop": 0.0,
|
33 |
+
"encoder_no_repeat_ngram_size": 0,
|
34 |
+
"eos_token_id": 32000,
|
35 |
+
"exponential_decay_length_penalty": null,
|
36 |
+
"finetuning_task": null,
|
37 |
+
"forced_bos_token_id": null,
|
38 |
+
"forced_eos_token_id": null,
|
39 |
+
"hidden_act": "silu",
|
40 |
+
"hidden_size": 3072,
|
41 |
+
"id2label": {
|
42 |
+
"0": "LABEL_0",
|
43 |
+
"1": "LABEL_1"
|
44 |
+
},
|
45 |
+
"initializer_range": 0.02,
|
46 |
+
"intermediate_size": 8192,
|
47 |
+
"is_decoder": false,
|
48 |
+
"is_encoder_decoder": false,
|
49 |
+
"label2id": {
|
50 |
+
"LABEL_0": 0,
|
51 |
+
"LABEL_1": 1
|
52 |
+
},
|
53 |
+
"length_penalty": 1.0,
|
54 |
+
"max_length": 20,
|
55 |
+
"max_position_embeddings": 4096,
|
56 |
+
"min_length": 0,
|
57 |
+
"model_type": "phi3",
|
58 |
+
"no_repeat_ngram_size": 0,
|
59 |
+
"num_attention_heads": 32,
|
60 |
+
"num_beam_groups": 1,
|
61 |
+
"num_beams": 1,
|
62 |
+
"num_hidden_layers": 8,
|
63 |
+
"num_key_value_heads": 32,
|
64 |
+
"num_return_sequences": 1,
|
65 |
+
"original_max_position_embeddings": 4096,
|
66 |
+
"output_attentions": false,
|
67 |
+
"output_hidden_states": false,
|
68 |
+
"output_scores": false,
|
69 |
+
"pad_token_id": 32000,
|
70 |
+
"prefix": null,
|
71 |
+
"problem_type": null,
|
72 |
+
"pruned_heads": {},
|
73 |
+
"remove_invalid_values": false,
|
74 |
+
"repetition_penalty": 1.0,
|
75 |
+
"resid_pdrop": 0.0,
|
76 |
+
"return_dict": true,
|
77 |
+
"return_dict_in_generate": false,
|
78 |
+
"rms_norm_eps": 1e-05,
|
79 |
+
"rope_scaling": null,
|
80 |
+
"rope_theta": 10000.0,
|
81 |
+
"sep_token_id": null,
|
82 |
+
"sliding_window": 2047,
|
83 |
+
"suppress_tokens": null,
|
84 |
+
"task_specific_params": null,
|
85 |
+
"temperature": 1.0,
|
86 |
+
"tf_legacy_loss": false,
|
87 |
+
"tie_encoder_decoder": false,
|
88 |
+
"tie_word_embeddings": false,
|
89 |
+
"tokenizer_class": null,
|
90 |
+
"top_k": 50,
|
91 |
+
"top_p": 1.0,
|
92 |
+
"torch_dtype": "bfloat16",
|
93 |
+
"torchscript": false,
|
94 |
+
"typical_p": 1.0,
|
95 |
+
"use_bfloat16": false,
|
96 |
+
"use_cache": true,
|
97 |
+
"vocab_size": 32064
|
98 |
+
},
|
99 |
+
"pooling_mode": "weighted_mean",
|
100 |
+
"skip_instruction": true,
|
101 |
+
"torch_dtype": "bfloat16",
|
102 |
+
"transformers_version": "4.44.2"
|
103 |
+
}
|
llmencoder.py
ADDED
@@ -0,0 +1,492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
from typing import Dict, List, Optional, Union
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch
|
8 |
+
import torch.multiprocessing as mp
|
9 |
+
from peft import PeftModel
|
10 |
+
from torch import Tensor, device, nn
|
11 |
+
from tqdm.autonotebook import tqdm, trange
|
12 |
+
from transformers import (
|
13 |
+
AutoModel,
|
14 |
+
AutoConfig,
|
15 |
+
PretrainedConfig,
|
16 |
+
PreTrainedModel,
|
17 |
+
AutoTokenizer,
|
18 |
+
LlamaConfig,
|
19 |
+
MistralConfig,
|
20 |
+
GemmaConfig,
|
21 |
+
Qwen2Config,
|
22 |
+
)
|
23 |
+
|
24 |
+
logger = logging.getLogger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
def batch_to_device(batch, target_device: device):
|
28 |
+
"""
|
29 |
+
send a pytorch batch to a device (CPU/GPU)
|
30 |
+
"""
|
31 |
+
for key in batch:
|
32 |
+
if isinstance(batch[key], Tensor):
|
33 |
+
batch[key] = batch[key].to(target_device)
|
34 |
+
return batch
|
35 |
+
|
36 |
+
|
37 |
+
class LLMEncoderConfig(PretrainedConfig):
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
pooling_mode: str = "weighted_mean",
|
41 |
+
max_length: int = 512,
|
42 |
+
doc_max_length: int = 400,
|
43 |
+
skip_instruction: bool = True,
|
44 |
+
**kwargs,
|
45 |
+
):
|
46 |
+
if pooling_mode not in ["mean", "weighted_mean", "eos_token", "bos_token"]:
|
47 |
+
raise ValueError(
|
48 |
+
(f"Pooling mode {pooling_mode} is not supported.",
|
49 |
+
"Please choose one of 'mean', 'weighted_mean', 'eos_token', 'bos_token'.")
|
50 |
+
)
|
51 |
+
self.pooling_mode = pooling_mode
|
52 |
+
self.max_length = max_length
|
53 |
+
self.doc_max_length = doc_max_length
|
54 |
+
self.skip_instruction = skip_instruction
|
55 |
+
self.model_config = None
|
56 |
+
self.base_model = None
|
57 |
+
|
58 |
+
super().__init__(**kwargs)
|
59 |
+
|
60 |
+
class LLMEncoder(PreTrainedModel):
|
61 |
+
config_class = LLMEncoderConfig
|
62 |
+
|
63 |
+
def __init__(
|
64 |
+
self,
|
65 |
+
model: PreTrainedModel,
|
66 |
+
tokenizer: AutoTokenizer,
|
67 |
+
config: LLMEncoderConfig
|
68 |
+
):
|
69 |
+
super().__init__(config)
|
70 |
+
self.model = model
|
71 |
+
self.tokenizer = tokenizer
|
72 |
+
self.pooling_mode = config.pooling_mode
|
73 |
+
self.max_length = config.max_length
|
74 |
+
self.doc_max_length = config.doc_max_length
|
75 |
+
self.skip_instruction = config.skip_instruction
|
76 |
+
self.model_config = None
|
77 |
+
|
78 |
+
@classmethod
|
79 |
+
def from_pretrained(
|
80 |
+
self,
|
81 |
+
base_model_name_or_path,
|
82 |
+
peft_model_name_or_path=None,
|
83 |
+
config=None,
|
84 |
+
**kwargs,
|
85 |
+
):
|
86 |
+
"""
|
87 |
+
Load a pretrained model from a model identifier or path.
|
88 |
+
Args:
|
89 |
+
base_model_name_or_path: Model identifier or path to pretrained model.
|
90 |
+
peft_model_name_or_path: Path to any PEFT models to apply.
|
91 |
+
Returns: L3Prune model.
|
92 |
+
"""
|
93 |
+
|
94 |
+
if not config:
|
95 |
+
config = LLMEncoderConfig()
|
96 |
+
|
97 |
+
if not config.base_model:
|
98 |
+
config.base_model = base_model_name_or_path
|
99 |
+
|
100 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_name_or_path)
|
101 |
+
tokenizer.pad_token = tokenizer.eos_token
|
102 |
+
tokenizer.padding_side = "left"
|
103 |
+
|
104 |
+
if config.model_config:
|
105 |
+
model_config = AutoConfig.from_pretrained(config.base_model)
|
106 |
+
model_config = model_config.from_dict(config.model_config)
|
107 |
+
else:
|
108 |
+
model_config = AutoConfig.from_pretrained(base_model_name_or_path)
|
109 |
+
config.model_config = model_config
|
110 |
+
|
111 |
+
model = AutoModel.from_pretrained(base_model_name_or_path, config=model_config, **kwargs)
|
112 |
+
|
113 |
+
|
114 |
+
if peft_model_name_or_path is not None:
|
115 |
+
model = PeftModel.from_pretrained(
|
116 |
+
model,
|
117 |
+
peft_model_name_or_path,
|
118 |
+
)
|
119 |
+
model = model.merge_and_unload()
|
120 |
+
|
121 |
+
return self(model=model, tokenizer=tokenizer, config=config)
|
122 |
+
|
123 |
+
def prune(self, percent_prune=0):
|
124 |
+
"""
|
125 |
+
Prune a model to a percentage of layers of the base model. If percent_prune is equal to or greater than 1,
|
126 |
+
it is taken as the specific layer number to prune to. For example, if percent_prune=0.3, 30% of the layers will be pruned. If
|
127 |
+
percent_prune=3, the model will be pruned to 3 layers.
|
128 |
+
"""
|
129 |
+
# take it as the specific layer number to prune to
|
130 |
+
if percent_prune >= 1:
|
131 |
+
new_num_layers = int(percent_prune)
|
132 |
+
else:
|
133 |
+
new_num_layers = int(self.model.config.num_hidden_layers * (1 - percent_prune))
|
134 |
+
print(f"Pruning to {new_num_layers} layer.")
|
135 |
+
self.model.layers = self.model.layers[:new_num_layers]
|
136 |
+
self.model.config.num_hidden_layers = new_num_layers
|
137 |
+
self.config.model_config.num_hidden_layers = new_num_layers
|
138 |
+
|
139 |
+
def prepare_for_tokenization(self, text):
|
140 |
+
if self.model.config._name_or_path == "meta-llama/Meta-Llama-3-8B-Instruct":
|
141 |
+
text = (
|
142 |
+
"<|start_header_id|>user<|end_header_id|>\n\n"
|
143 |
+
+ text.strip()
|
144 |
+
+ "<|eot_id|>"
|
145 |
+
)
|
146 |
+
return text
|
147 |
+
if self.model.config._name_or_path in [
|
148 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
149 |
+
"meta-llama/Llama-2-7b-chat-hf",
|
150 |
+
]:
|
151 |
+
text = "[INST] " + text.strip() + " [/INST]"
|
152 |
+
if self.model.config._name_or_path in [
|
153 |
+
"google/gemma-2-9b-it",
|
154 |
+
]:
|
155 |
+
text = "<bos><start_of_turn>user\n" + text.strip() + "<end_of_turn>"
|
156 |
+
if self.model.config._name_or_path in [
|
157 |
+
"Qwen/Qwen2-1.5B-Instruct",
|
158 |
+
"Qwen/Qwen2-7B-Instruct",
|
159 |
+
]:
|
160 |
+
text = "<|im_start|>user\n" + text.strip() + "<|im_end|>"
|
161 |
+
if self.pooling_mode == "eos_token":
|
162 |
+
if self.model.config._name_or_path == "meta-llama/Meta-Llama-3-8B":
|
163 |
+
text = text.strip() + "<|end_of_text|>"
|
164 |
+
elif isinstance(self.model.config, LlamaConfig) or isinstance(
|
165 |
+
self.model.config, MistralConfig
|
166 |
+
):
|
167 |
+
text = text.strip() + " </s>"
|
168 |
+
elif isinstance(self.model.config, GemmaConfig):
|
169 |
+
text = text.strip() + "<eos>"
|
170 |
+
elif isinstance(self.model.config, Qwen2Config):
|
171 |
+
text = text.strip() + "<|endoftext|>"
|
172 |
+
return text
|
173 |
+
|
174 |
+
def tokenize(self, texts):
|
175 |
+
texts_2 = []
|
176 |
+
original_texts = []
|
177 |
+
for text in texts:
|
178 |
+
t = text.split("!@#$%^&*()")
|
179 |
+
texts_2.append(t[1] if len(t) > 1 else "")
|
180 |
+
original_texts.append("".join(t))
|
181 |
+
|
182 |
+
original = self.tokenizer(
|
183 |
+
original_texts,
|
184 |
+
return_tensors="pt",
|
185 |
+
padding=True,
|
186 |
+
truncation=True,
|
187 |
+
max_length=self.max_length,
|
188 |
+
)
|
189 |
+
embed_mask = None
|
190 |
+
for t_i, t in enumerate(texts_2):
|
191 |
+
ids = self.tokenizer(
|
192 |
+
[t],
|
193 |
+
return_tensors="pt",
|
194 |
+
padding=True,
|
195 |
+
truncation=True,
|
196 |
+
max_length=self.max_length,
|
197 |
+
add_special_tokens=False,
|
198 |
+
)
|
199 |
+
if embed_mask is None:
|
200 |
+
e_m = torch.zeros_like(original["attention_mask"][t_i])
|
201 |
+
if len(ids["input_ids"][0]) > 0:
|
202 |
+
e_m[-len(ids["input_ids"][0]) :] = torch.ones(
|
203 |
+
len(ids["input_ids"][0])
|
204 |
+
)
|
205 |
+
embed_mask = e_m.unsqueeze(0)
|
206 |
+
else:
|
207 |
+
e_m = torch.zeros_like(original["attention_mask"][t_i])
|
208 |
+
if len(ids["input_ids"][0]) > 0:
|
209 |
+
e_m[-len(ids["input_ids"][0]) :] = torch.ones(
|
210 |
+
len(ids["input_ids"][0])
|
211 |
+
)
|
212 |
+
embed_mask = torch.cat((embed_mask, e_m.unsqueeze(0)), dim=0)
|
213 |
+
|
214 |
+
original["embed_mask"] = embed_mask
|
215 |
+
return original
|
216 |
+
|
217 |
+
def _skip_instruction(self, sentence_feature):
|
218 |
+
assert (
|
219 |
+
sentence_feature["attention_mask"].shape
|
220 |
+
== sentence_feature["embed_mask"].shape
|
221 |
+
)
|
222 |
+
sentence_feature["attention_mask"] = sentence_feature["embed_mask"]
|
223 |
+
|
224 |
+
def forward(self, sentence_feature: Dict[str, Tensor]):
|
225 |
+
embed_mask = None
|
226 |
+
if "embed_mask" in sentence_feature:
|
227 |
+
embed_mask = sentence_feature.pop("embed_mask")
|
228 |
+
reps = self.model(**sentence_feature)
|
229 |
+
sentence_feature["embed_mask"] = embed_mask
|
230 |
+
|
231 |
+
return self.get_pooling(sentence_feature, reps.last_hidden_state)
|
232 |
+
|
233 |
+
def get_pooling(self, features, last_hidden_states): # All models padded from left
|
234 |
+
assert (
|
235 |
+
self.tokenizer.padding_side == "left"
|
236 |
+
), "Pooling modes are implemented for padding from left."
|
237 |
+
if self.skip_instruction:
|
238 |
+
self._skip_instruction(features)
|
239 |
+
seq_lengths = features["attention_mask"].sum(dim=-1)
|
240 |
+
if self.pooling_mode == "mean":
|
241 |
+
return torch.stack(
|
242 |
+
[
|
243 |
+
last_hidden_states[i, -length:, :].mean(dim=0)
|
244 |
+
for i, length in enumerate(seq_lengths)
|
245 |
+
],
|
246 |
+
dim=0,
|
247 |
+
)
|
248 |
+
elif self.pooling_mode == "weighted_mean":
|
249 |
+
bs, l, _ = last_hidden_states.shape
|
250 |
+
complete_weights = torch.zeros(bs, l, device=last_hidden_states.device)
|
251 |
+
for i, seq_l in enumerate(seq_lengths):
|
252 |
+
if seq_l > 0:
|
253 |
+
complete_weights[i, -seq_l:] = torch.arange(seq_l) + 1
|
254 |
+
complete_weights[i] /= torch.clamp(
|
255 |
+
complete_weights[i].sum(), min=1e-9
|
256 |
+
)
|
257 |
+
return torch.sum(last_hidden_states * complete_weights.unsqueeze(-1), dim=1)
|
258 |
+
elif self.pooling_mode == "eos_token" or self.pooling_mode == "last_token":
|
259 |
+
return last_hidden_states[:, -1]
|
260 |
+
elif self.pooling_mode == "bos_token":
|
261 |
+
return last_hidden_states[
|
262 |
+
features["input_ids"] == self.tokenizer.bos_token_id
|
263 |
+
]
|
264 |
+
else:
|
265 |
+
raise ValueError(f"{self.pooling_mode} is not implemented yet.")
|
266 |
+
|
267 |
+
def _convert_to_str(self, instruction, text):
|
268 |
+
tokenized_q = self.tokenizer(
|
269 |
+
text,
|
270 |
+
return_tensors="pt",
|
271 |
+
padding=True,
|
272 |
+
truncation=True,
|
273 |
+
max_length=self.max_length,
|
274 |
+
add_special_tokens=False,
|
275 |
+
)
|
276 |
+
tokenized_q_length = len(tokenized_q["input_ids"][0])
|
277 |
+
|
278 |
+
while tokenized_q_length > self.doc_max_length:
|
279 |
+
reduction_ratio = self.doc_max_length / tokenized_q_length
|
280 |
+
reduced_length = int(len(text.split()) * reduction_ratio)
|
281 |
+
text = " ".join(text.split()[:reduced_length])
|
282 |
+
tokenized_q = self.tokenizer(
|
283 |
+
text,
|
284 |
+
return_tensors="pt",
|
285 |
+
padding=True,
|
286 |
+
truncation=True,
|
287 |
+
max_length=self.max_length,
|
288 |
+
add_special_tokens=False,
|
289 |
+
)
|
290 |
+
tokenized_q_length = len(tokenized_q["input_ids"][0])
|
291 |
+
|
292 |
+
return (
|
293 |
+
f"{instruction.strip()} !@#$%^&*(){text}"
|
294 |
+
if instruction
|
295 |
+
else f"!@#$%^&*(){text}"
|
296 |
+
)
|
297 |
+
|
298 |
+
def encode(
|
299 |
+
self,
|
300 |
+
sentences: Union[str, List[str]],
|
301 |
+
batch_size: int = 32,
|
302 |
+
show_progress_bar: bool = True,
|
303 |
+
convert_to_numpy: bool = False,
|
304 |
+
convert_to_tensor: bool = False,
|
305 |
+
device: Optional[str] = None,
|
306 |
+
):
|
307 |
+
"""
|
308 |
+
Encode a list of sentences to their respective embeddings. The sentences can be a list of strings or a string.
|
309 |
+
Args:
|
310 |
+
sentences: sentence or sentences to encode.
|
311 |
+
batch_size: batch size for turning sentence tokens into embeddings.
|
312 |
+
show_progress_bar: whether to show progress bars during encoding steps.
|
313 |
+
convert_to_numpy: If true, return numpy arrays instead of torch tensors.
|
314 |
+
convert_to_tensor: If true, return torch tensors (default).
|
315 |
+
device: torch backend device identifier (e.g., 'cuda', 'cpu','mps' etc.). If not specified,
|
316 |
+
the default is to use cuda when available, otherwise cpu. Note that only the choice of 'cuda' supports
|
317 |
+
multiprocessing as currently implemented.
|
318 |
+
|
319 |
+
Returns: embeddings of the sentences. Embeddings are detached and always on the CPU (see _encode implementation).
|
320 |
+
|
321 |
+
"""
|
322 |
+
if isinstance(sentences[0], str) and isinstance(sentences[-1], int):
|
323 |
+
sentences = [sentences]
|
324 |
+
# required for MEDI version of MTEB
|
325 |
+
if isinstance(sentences[0], str):
|
326 |
+
sentences = [[""] + [sentence] for sentence in sentences]
|
327 |
+
|
328 |
+
if device is None:
|
329 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
330 |
+
|
331 |
+
concatenated_input_texts = []
|
332 |
+
for sentence in sentences:
|
333 |
+
assert isinstance(sentence[0], str)
|
334 |
+
assert isinstance(sentence[1], str)
|
335 |
+
concatenated_input_texts.append(
|
336 |
+
self._convert_to_str(sentence[0], sentence[1])
|
337 |
+
)
|
338 |
+
sentences = concatenated_input_texts
|
339 |
+
|
340 |
+
self.eval()
|
341 |
+
|
342 |
+
if convert_to_tensor:
|
343 |
+
convert_to_numpy = False
|
344 |
+
|
345 |
+
length_sorted_idx = np.argsort([-self._text_length(sen) for sen in sentences])
|
346 |
+
sentences_sorted = [sentences[idx] for idx in length_sorted_idx]
|
347 |
+
all_embeddings = []
|
348 |
+
|
349 |
+
if torch.cuda.device_count() <= 1:
|
350 |
+
# This branch also support mps devices
|
351 |
+
self.to(device)
|
352 |
+
for start_index in trange(
|
353 |
+
0,
|
354 |
+
len(sentences),
|
355 |
+
batch_size,
|
356 |
+
desc="Batches",
|
357 |
+
disable=not show_progress_bar,
|
358 |
+
):
|
359 |
+
sentences_batch = sentences_sorted[
|
360 |
+
start_index : start_index + batch_size
|
361 |
+
]
|
362 |
+
embeddings = self._encode(
|
363 |
+
sentences_batch, device=device, convert_to_numpy=convert_to_numpy
|
364 |
+
)
|
365 |
+
all_embeddings.append(embeddings)
|
366 |
+
else:
|
367 |
+
|
368 |
+
num_proc = torch.cuda.device_count()
|
369 |
+
cuda_compatible_multiprocess = mp.get_context("spawn")
|
370 |
+
with cuda_compatible_multiprocess.Pool(num_proc) as p:
|
371 |
+
sentences_batches = [
|
372 |
+
sentences_sorted[start_index : start_index + batch_size]
|
373 |
+
for start_index in range(0, len(sentences), batch_size)
|
374 |
+
]
|
375 |
+
|
376 |
+
progress_bar = tqdm(
|
377 |
+
total=len(sentences_batches),
|
378 |
+
desc="Batches",
|
379 |
+
disable=not show_progress_bar,
|
380 |
+
)
|
381 |
+
results = []
|
382 |
+
|
383 |
+
def update(*args):
|
384 |
+
progress_bar.update()
|
385 |
+
|
386 |
+
for batch in sentences_batches:
|
387 |
+
results.append(
|
388 |
+
p.apply_async(
|
389 |
+
self._encode,
|
390 |
+
args=(batch, None, convert_to_numpy, True),
|
391 |
+
callback=update,
|
392 |
+
)
|
393 |
+
)
|
394 |
+
|
395 |
+
all_embeddings = [result.get() for result in results]
|
396 |
+
progress_bar.close()
|
397 |
+
|
398 |
+
all_embeddings = torch.cat(all_embeddings, dim=0)
|
399 |
+
all_embeddings = all_embeddings[np.argsort(length_sorted_idx)]
|
400 |
+
all_embeddings = all_embeddings.to(torch.float32)
|
401 |
+
if convert_to_numpy:
|
402 |
+
all_embeddings = np.asarray([emb.numpy() for emb in all_embeddings])
|
403 |
+
return all_embeddings
|
404 |
+
|
405 |
+
def save(self, output_path, merge_before_save=False, save_config=True):
|
406 |
+
if merge_before_save and isinstance(self.model, PeftModel):
|
407 |
+
self.model = self.model.merge_and_unload()
|
408 |
+
if hasattr(self.model, "_hf_peft_config_loaded"):
|
409 |
+
self.model._hf_peft_config_loaded = False
|
410 |
+
|
411 |
+
self.model.save_pretrained(output_path)
|
412 |
+
self.tokenizer.save_pretrained(output_path)
|
413 |
+
|
414 |
+
l3prune_config = {
|
415 |
+
"pooling_mode": self.pooling_mode,
|
416 |
+
"max_length": self.max_length,
|
417 |
+
"doc_max_length": self.doc_max_length,
|
418 |
+
"skip_instruction": self.skip_instruction,
|
419 |
+
}
|
420 |
+
|
421 |
+
if save_config:
|
422 |
+
os.makedirs(output_path, exist_ok=True)
|
423 |
+
with open(f"{output_path}/l3prune_config.json", "w") as fOut:
|
424 |
+
json.dump(l3prune_config, fOut, indent=4)
|
425 |
+
|
426 |
+
def _encode(
|
427 |
+
self,
|
428 |
+
sentences_batch,
|
429 |
+
device: Optional[str] = None,
|
430 |
+
convert_to_numpy: bool = False,
|
431 |
+
multiprocessing=False,
|
432 |
+
):
|
433 |
+
if multiprocessing:
|
434 |
+
# multiprocessing only supports CUDA devices at this time, so we ignore the value of device
|
435 |
+
# and use cuda:rank for the device
|
436 |
+
rank = mp.current_process()._identity[0]
|
437 |
+
if device is None and torch.cuda.is_available():
|
438 |
+
device = f"cuda:{rank % torch.cuda.device_count()}"
|
439 |
+
|
440 |
+
self.to(device)
|
441 |
+
features = self.tokenize(
|
442 |
+
[self.prepare_for_tokenization(sentence) for sentence in sentences_batch]
|
443 |
+
)
|
444 |
+
features = batch_to_device(features, device)
|
445 |
+
|
446 |
+
with torch.no_grad():
|
447 |
+
embeddings = self.forward(features)
|
448 |
+
embeddings = embeddings.detach()
|
449 |
+
embeddings = embeddings.cpu()
|
450 |
+
|
451 |
+
return embeddings
|
452 |
+
|
453 |
+
def _text_length(self, text: Union[List[int], List[List[int]]]):
|
454 |
+
"""
|
455 |
+
Help function to get the length for the input text. Text can be either a string (which means a single text)
|
456 |
+
a list of ints (which means a single tokenized text), or a tuple of list of ints
|
457 |
+
(representing several text inputs to the model).
|
458 |
+
"""
|
459 |
+
if (
|
460 |
+
isinstance(text, str)
|
461 |
+
or (isinstance(text, list) and isinstance(text[0], int))
|
462 |
+
or len(text) == 0
|
463 |
+
): # Single text, list of ints, or empty
|
464 |
+
return len(text)
|
465 |
+
if isinstance(text, dict): # {key: value} case
|
466 |
+
return len(next(iter(text.values())))
|
467 |
+
elif not hasattr(text, "__len__"): # Object has no len() method
|
468 |
+
return 1
|
469 |
+
else:
|
470 |
+
return sum([len(t) for t in text])
|
471 |
+
|
472 |
+
def resize_token_embeddings(
|
473 |
+
self,
|
474 |
+
new_num_tokens: Optional[int] = None,
|
475 |
+
pad_to_multiple_of: Optional[int] = None,
|
476 |
+
) -> nn.Embedding:
|
477 |
+
return self.model.resize_token_embeddings(
|
478 |
+
new_num_tokens=new_num_tokens, pad_to_multiple_of=pad_to_multiple_of
|
479 |
+
)
|
480 |
+
|
481 |
+
def gradient_checkpointing_enable(self, gradient_checkpointing_kwargs=None):
|
482 |
+
self.model.gradient_checkpointing_enable(
|
483 |
+
gradient_checkpointing_kwargs=gradient_checkpointing_kwargs
|
484 |
+
)
|
485 |
+
|
486 |
+
def save_pretrained(self, save_directory, **kwargs):
|
487 |
+
self.tokenizer.save_pretrained(save_directory, **kwargs)
|
488 |
+
super().save_pretrained(save_directory, **kwargs)
|
489 |
+
|
490 |
+
def push_to_hub(self, repo_id, **kwargs):
|
491 |
+
self.tokenizer.push_to_hub(repo_id, **kwargs)
|
492 |
+
super().push_to_hub(repo_id, **kwargs)
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58fea5fb8abba406255cd217606f51e3a5070d1f98615ff510f8d72c178823d0
|
3 |
+
size 2009050776
|