File size: 2,124 Bytes
f3e4b92
 
 
 
 
 
fc1a7ae
f3e4b92
 
f246440
 
 
 
 
 
 
f3e4b92
90a7ef7
f246440
 
 
90a7ef7
f246440
 
 
 
 
 
 
90a7ef7
b71fe6d
1038c44
90a7ef7
b71fe6d
1038c44
0f27a42
 
 
 
 
 
 
 
 
 
90a7ef7
0f27a42
1038c44
0f27a42
 
1038c44
f3e4b92
 
fc1a7ae
 
f3e4b92
fc1a7ae
f3e4b92
fc1a7ae
 
a925747
 
f3e4b92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc1a7ae
f3e4b92
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
language:
- ml
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
- google/fleurs
- thennal/IMaSC
- thennal/ulca_ml
- thennal/msc
- thennal/indic_tts_ml
metrics:
- wer
model-index:
- name: Whisper Medium Malayalam - Thennal D K
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Common Voice 11.0
      type: mozilla-foundation/common_voice_11_0
      config: ml
      split: test
      args: ml
    metrics:
    - type: wer
      value: 38.62068965517241
      name: WER
    - type: cer
      value: 7.325639739086803
      name: CER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: FLEURS
      type: google/fleurs
      config: ml_in
      split: test
      args: ml_in
    metrics:
    - type: wer
      value: 27.850740045862
      name: WER
    - type: cer
      value: 8.821352343856674
      name: CER
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Medium Malayalam

This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- WER: 38.6207
- CER: 7.3256

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 8000
- mixed_precision_training: Native AMP

### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2