File size: 2,124 Bytes
f3e4b92 fc1a7ae f3e4b92 f246440 f3e4b92 90a7ef7 f246440 90a7ef7 f246440 90a7ef7 b71fe6d 1038c44 90a7ef7 b71fe6d 1038c44 0f27a42 90a7ef7 0f27a42 1038c44 0f27a42 1038c44 f3e4b92 fc1a7ae f3e4b92 fc1a7ae f3e4b92 fc1a7ae a925747 f3e4b92 fc1a7ae f3e4b92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
language:
- ml
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
- google/fleurs
- thennal/IMaSC
- thennal/ulca_ml
- thennal/msc
- thennal/indic_tts_ml
metrics:
- wer
model-index:
- name: Whisper Medium Malayalam - Thennal D K
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 11.0
type: mozilla-foundation/common_voice_11_0
config: ml
split: test
args: ml
metrics:
- type: wer
value: 38.62068965517241
name: WER
- type: cer
value: 7.325639739086803
name: CER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: FLEURS
type: google/fleurs
config: ml_in
split: test
args: ml_in
metrics:
- type: wer
value: 27.850740045862
name: WER
- type: cer
value: 8.821352343856674
name: CER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Medium Malayalam
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- WER: 38.6207
- CER: 7.3256
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 8000
- mixed_precision_training: Native AMP
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|