File size: 3,199 Bytes
74e644d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
architecture:
backbone_dtype: int4
gradient_checkpointing: true
intermediate_dropout: 0.0
pretrained: true
pretrained_weights: ''
augmentation:
neftune_noise_alpha: 0.0
random_parent_probability: 0.0
skip_parent_probability: 0.0
token_mask_probability: 0.0
dataset:
add_eos_token_to_answer: true
add_eos_token_to_prompt: true
add_eos_token_to_system: true
answer_column: output
chatbot_author: H2O.ai
chatbot_name: h2oGPT
data_sample: 1.0
data_sample_choice:
- Train
- Validation
limit_chained_samples: false
mask_prompt_labels: true
only_last_answer: false
parent_id_column: None
personalize: false
prompt_column:
- instruction
- input
prompt_column_separator: \n\n
system_column: None
text_answer_separator: <|answer|>
text_prompt_start: <|prompt|>
text_system_start: <|system|>
train_dataframe: /home/llmstudio/mount/data/user/MysteryWriter_train/MysteryWriter_train.pq
validation_dataframe: None
validation_size: 0.01
validation_strategy: automatic
environment:
compile_model: false
deepspeed_allgather_bucket_size: 1000000
deepspeed_method: ZeRO2
deepspeed_reduce_bucket_size: 1000000
deepspeed_stage3_param_persistence_threshold: 1000000
deepspeed_stage3_prefetch_bucket_size: 1000000
find_unused_parameters: false
gpus:
- '0'
huggingface_branch: main
mixed_precision: true
mixed_precision_dtype: bfloat16
number_of_workers: 8
seed: -1
trust_remote_code: true
use_deepspeed: false
experiment_name: Boptruth-Agatha
llm_backbone: theprint/Boptruth-NeuralMonarch-7B
logging:
log_all_ranks: false
log_step_size: absolute
logger: None
neptune_project: ''
wandb_entity: ''
wandb_project: ''
output_directory: /home/llmstudio/mount/output/user/Boptruth-Agatha/
prediction:
batch_size_inference: 0
do_sample: false
max_length_inference: 256
max_time: 0.0
metric: BLEU
metric_gpt_model: gpt-3.5-turbo-0301
metric_gpt_template: general
min_length_inference: 2
num_beams: 1
num_history: 4
repetition_penalty: 1.0
stop_tokens: ''
temperature: 0.0
top_k: 0
top_p: 1.0
problem_type: text_causal_language_modeling
tokenizer:
add_prompt_answer_tokens: false
max_length: 1024
padding_quantile: 1.0
tokenizer_kwargs: '{"use_fast": true, "add_prefix_space": false}'
training:
attention_implementation: auto
batch_size: 3
differential_learning_rate: 1.0e-05
differential_learning_rate_layers: []
drop_last_batch: true
epochs: 1
evaluate_before_training: false
evaluation_epochs: 1.0
freeze_layers: []
grad_accumulation: 1
gradient_clip: 0.0
learning_rate: 0.0001
lora: true
lora_alpha: 16
lora_dropout: 0.05
lora_r: 4
lora_target_modules: ''
lora_unfreeze_layers: []
loss_function: TokenAveragedCrossEntropy
min_learning_rate_ratio: 0.0
optimizer: AdamW
save_checkpoint: last
schedule: Cosine
train_validation_data: false
use_dora: false
use_rslora: false
warmup_epochs: 0.0
weight_decay: 0.0
|