thomagram commited on
Commit
3225d54
1 Parent(s): d47534c

Create pipeline.py

Browse files
Files changed (1) hide show
  1. pipeline.py +510 -0
pipeline.py ADDED
@@ -0,0 +1,510 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any, Dict, Optional
2
+ from diffusers.models import AutoencoderKL, UNet2DConditionModel
3
+ from diffusers.schedulers import KarrasDiffusionSchedulers
4
+
5
+ import numpy
6
+ import torch
7
+ import torch.nn as nn
8
+ import torch.utils.checkpoint
9
+ import torch.distributed
10
+ import transformers
11
+ from collections import OrderedDict
12
+ from PIL import Image
13
+ from torchvision import transforms
14
+ from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
15
+
16
+ import diffusers
17
+ from diffusers import (
18
+ AutoencoderKL,
19
+ DDPMScheduler,
20
+ DiffusionPipeline,
21
+ EulerAncestralDiscreteScheduler,
22
+ UNet2DConditionModel,
23
+ ImagePipelineOutput
24
+ )
25
+ from diffusers.image_processor import VaeImageProcessor
26
+ from diffusers.models.attention_processor import Attention, AttnProcessor, XFormersAttnProcessor, AttnProcessor2_0
27
+ from diffusers.utils.import_utils import is_xformers_available
28
+
29
+
30
+ def to_rgb_image(maybe_rgba: Image.Image):
31
+ if maybe_rgba.mode == 'RGB':
32
+ return maybe_rgba
33
+ elif maybe_rgba.mode == 'RGBA':
34
+ rgba = maybe_rgba
35
+ img = numpy.random.randint(127, 128, size=[rgba.size[1], rgba.size[0], 3], dtype=numpy.uint8)
36
+ img = Image.fromarray(img, 'RGB')
37
+ img.paste(rgba, mask=rgba.getchannel('A'))
38
+ return img
39
+ else:
40
+ raise ValueError("Unsupported image type.", maybe_rgba.mode)
41
+
42
+
43
+ class ReferenceOnlyAttnProc(torch.nn.Module):
44
+ def __init__(
45
+ self,
46
+ chained_proc,
47
+ enabled=False,
48
+ name=None
49
+ ) -> None:
50
+ super().__init__()
51
+ self.enabled = enabled
52
+ self.chained_proc = chained_proc
53
+ self.name = name
54
+
55
+ def __call__(
56
+ self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None,
57
+ mode="w", ref_dict: dict = None, is_cfg_guidance = False
58
+ ) -> Any:
59
+ if encoder_hidden_states is None:
60
+ encoder_hidden_states = hidden_states
61
+ if self.enabled and is_cfg_guidance:
62
+ res0 = self.chained_proc(attn, hidden_states[:1], encoder_hidden_states[:1], attention_mask)
63
+ hidden_states = hidden_states[1:]
64
+ encoder_hidden_states = encoder_hidden_states[1:]
65
+ if self.enabled:
66
+ if mode == 'w':
67
+ ref_dict[self.name] = encoder_hidden_states
68
+ elif mode == 'r':
69
+ encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1)
70
+ elif mode == 'm':
71
+ encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict[self.name]], dim=1)
72
+ else:
73
+ assert False, mode
74
+ res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask)
75
+ if self.enabled and is_cfg_guidance:
76
+ res = torch.cat([res0, res])
77
+ return res
78
+
79
+
80
+ class RefOnlyNoisedUNet(torch.nn.Module):
81
+ def __init__(self, unet: UNet2DConditionModel, train_sched: DDPMScheduler, val_sched: EulerAncestralDiscreteScheduler) -> None:
82
+ super().__init__()
83
+ self.unet = unet
84
+ self.train_sched = train_sched
85
+ self.val_sched = val_sched
86
+
87
+ unet_lora_attn_procs = dict()
88
+ for name, _ in unet.attn_processors.items():
89
+ if torch.__version__ >= '2.0':
90
+ default_attn_proc = AttnProcessor2_0()
91
+ elif is_xformers_available():
92
+ default_attn_proc = XFormersAttnProcessor()
93
+ else:
94
+ default_attn_proc = AttnProcessor()
95
+ unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(
96
+ default_attn_proc, enabled=name.endswith("attn1.processor"), name=name
97
+ )
98
+ unet.set_attn_processor(unet_lora_attn_procs)
99
+
100
+ def __getattr__(self, name: str):
101
+ try:
102
+ return super().__getattr__(name)
103
+ except AttributeError:
104
+ return getattr(self.unet, name)
105
+
106
+ def forward_cond(self, noisy_cond_lat, timestep, encoder_hidden_states, class_labels, ref_dict, is_cfg_guidance, **kwargs):
107
+ if is_cfg_guidance:
108
+ encoder_hidden_states = encoder_hidden_states[1:]
109
+ class_labels = class_labels[1:]
110
+ self.unet(
111
+ noisy_cond_lat, timestep,
112
+ encoder_hidden_states=encoder_hidden_states,
113
+ class_labels=class_labels,
114
+ cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict),
115
+ **kwargs
116
+ )
117
+
118
+ def forward(
119
+ self, sample, timestep, encoder_hidden_states, class_labels=None,
120
+ *args, cross_attention_kwargs,
121
+ down_block_res_samples=None, mid_block_res_sample=None,
122
+ **kwargs
123
+ ):
124
+ cond_lat = cross_attention_kwargs['cond_lat']
125
+ is_cfg_guidance = cross_attention_kwargs.get('is_cfg_guidance', False)
126
+ noise = torch.randn_like(cond_lat)
127
+ if self.training:
128
+ noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep)
129
+ noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep)
130
+ else:
131
+ noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1))
132
+ noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1))
133
+ ref_dict = {}
134
+ self.forward_cond(
135
+ noisy_cond_lat, timestep,
136
+ encoder_hidden_states, class_labels,
137
+ ref_dict, is_cfg_guidance, **kwargs
138
+ )
139
+ weight_dtype = self.unet.dtype
140
+ return self.unet(
141
+ sample, timestep,
142
+ encoder_hidden_states, *args,
143
+ class_labels=class_labels,
144
+ cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict, is_cfg_guidance=is_cfg_guidance),
145
+ down_block_additional_residuals=[
146
+ sample.to(dtype=weight_dtype) for sample in down_block_res_samples
147
+ ] if down_block_res_samples is not None else None,
148
+ mid_block_additional_residual=(
149
+ mid_block_res_sample.to(dtype=weight_dtype)
150
+ if mid_block_res_sample is not None else None
151
+ ),
152
+ **kwargs
153
+ )
154
+
155
+
156
+ def scale_latents(latents):
157
+ latents = (latents - 0.22) * 0.75
158
+ return latents
159
+
160
+
161
+ def unscale_latents(latents):
162
+ latents = latents / 0.75 + 0.22
163
+ return latents
164
+
165
+
166
+ def scale_image(image):
167
+ image = image * 0.5 / 0.8
168
+ return image
169
+
170
+
171
+ def unscale_image(image):
172
+ image = image / 0.5 * 0.8
173
+ return image
174
+
175
+
176
+ class DepthControlUNet(torch.nn.Module):
177
+ def __init__(self, unet: RefOnlyNoisedUNet, controlnet: Optional[diffusers.ControlNetModel] = None, conditioning_scale=1.0) -> None:
178
+ super().__init__()
179
+ self.unet = unet
180
+ if controlnet is None:
181
+ self.controlnet = diffusers.ControlNetModel.from_unet(unet.unet)
182
+ else:
183
+ self.controlnet = controlnet
184
+ DefaultAttnProc = AttnProcessor2_0
185
+ if is_xformers_available():
186
+ DefaultAttnProc = XFormersAttnProcessor
187
+ self.controlnet.set_attn_processor(DefaultAttnProc())
188
+ self.conditioning_scale = conditioning_scale
189
+
190
+ def __getattr__(self, name: str):
191
+ try:
192
+ return super().__getattr__(name)
193
+ except AttributeError:
194
+ return getattr(self.unet, name)
195
+
196
+ def forward(self, sample, timestep, encoder_hidden_states, class_labels=None, *args, cross_attention_kwargs: dict, **kwargs):
197
+ cross_attention_kwargs = dict(cross_attention_kwargs)
198
+ control_depth = cross_attention_kwargs.pop('control_depth')
199
+ down_block_res_samples, mid_block_res_sample = self.controlnet(
200
+ sample,
201
+ timestep,
202
+ encoder_hidden_states=encoder_hidden_states,
203
+ controlnet_cond=control_depth,
204
+ conditioning_scale=self.conditioning_scale,
205
+ return_dict=False,
206
+ )
207
+ return self.unet(
208
+ sample,
209
+ timestep,
210
+ encoder_hidden_states=encoder_hidden_states,
211
+ down_block_res_samples=down_block_res_samples,
212
+ mid_block_res_sample=mid_block_res_sample,
213
+ cross_attention_kwargs=cross_attention_kwargs
214
+ )
215
+
216
+
217
+ class ModuleListDict(torch.nn.Module):
218
+ def __init__(self, procs: dict) -> None:
219
+ super().__init__()
220
+ self.keys = sorted(procs.keys())
221
+ self.values = torch.nn.ModuleList(procs[k] for k in self.keys)
222
+
223
+ def __getitem__(self, key):
224
+ return self.values[self.keys.index(key)]
225
+
226
+
227
+ class SuperNet(torch.nn.Module):
228
+ def __init__(self, state_dict: Dict[str, torch.Tensor]):
229
+ super().__init__()
230
+ state_dict = OrderedDict((k, state_dict[k]) for k in sorted(state_dict.keys()))
231
+ self.layers = torch.nn.ModuleList(state_dict.values())
232
+ self.mapping = dict(enumerate(state_dict.keys()))
233
+ self.rev_mapping = {v: k for k, v in enumerate(state_dict.keys())}
234
+
235
+ # .processor for unet, .self_attn for text encoder
236
+ self.split_keys = [".processor", ".self_attn"]
237
+
238
+ # we add a hook to state_dict() and load_state_dict() so that the
239
+ # naming fits with `unet.attn_processors`
240
+ def map_to(module, state_dict, *args, **kwargs):
241
+ new_state_dict = {}
242
+ for key, value in state_dict.items():
243
+ num = int(key.split(".")[1]) # 0 is always "layers"
244
+ new_key = key.replace(f"layers.{num}", module.mapping[num])
245
+ new_state_dict[new_key] = value
246
+
247
+ return new_state_dict
248
+
249
+ def remap_key(key, state_dict):
250
+ for k in self.split_keys:
251
+ if k in key:
252
+ return key.split(k)[0] + k
253
+ return key.split('.')[0]
254
+
255
+ def map_from(module, state_dict, *args, **kwargs):
256
+ all_keys = list(state_dict.keys())
257
+ for key in all_keys:
258
+ replace_key = remap_key(key, state_dict)
259
+ new_key = key.replace(replace_key, f"layers.{module.rev_mapping[replace_key]}")
260
+ state_dict[new_key] = state_dict[key]
261
+ del state_dict[key]
262
+
263
+ self._register_state_dict_hook(map_to)
264
+ self._register_load_state_dict_pre_hook(map_from, with_module=True)
265
+
266
+
267
+ class Zero123PlusPipeline(diffusers.StableDiffusionPipeline):
268
+ tokenizer: transformers.CLIPTokenizer
269
+ text_encoder: transformers.CLIPTextModel
270
+ vision_encoder: transformers.CLIPVisionModelWithProjection
271
+
272
+ feature_extractor_clip: transformers.CLIPImageProcessor
273
+ unet: UNet2DConditionModel
274
+ scheduler: diffusers.schedulers.KarrasDiffusionSchedulers
275
+
276
+ vae: AutoencoderKL
277
+ ramping: nn.Linear
278
+
279
+ feature_extractor_vae: transformers.CLIPImageProcessor
280
+
281
+ depth_transforms_multi = transforms.Compose([
282
+ transforms.ToTensor(),
283
+ transforms.Normalize([0.5], [0.5])
284
+ ])
285
+
286
+ def __init__(
287
+ self,
288
+ vae: AutoencoderKL,
289
+ text_encoder: CLIPTextModel,
290
+ tokenizer: CLIPTokenizer,
291
+ unet: UNet2DConditionModel,
292
+ scheduler: KarrasDiffusionSchedulers,
293
+ vision_encoder: transformers.CLIPVisionModelWithProjection,
294
+ feature_extractor_clip: CLIPImageProcessor,
295
+ feature_extractor_vae: CLIPImageProcessor,
296
+ ramping_coefficients: Optional[list] = None,
297
+ safety_checker=None,
298
+ ):
299
+ DiffusionPipeline.__init__(self)
300
+
301
+ self.register_modules(
302
+ vae=vae, text_encoder=text_encoder, tokenizer=tokenizer,
303
+ unet=unet, scheduler=scheduler, safety_checker=None,
304
+ vision_encoder=vision_encoder,
305
+ feature_extractor_clip=feature_extractor_clip,
306
+ feature_extractor_vae=feature_extractor_vae
307
+ )
308
+ self.register_to_config(ramping_coefficients=ramping_coefficients)
309
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
310
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
311
+
312
+ def prepare(self):
313
+ train_sched = DDPMScheduler.from_config(self.scheduler.config)
314
+ self.scheduler = train_sched
315
+ if isinstance(self.unet, UNet2DConditionModel):
316
+ self.unet = RefOnlyNoisedUNet(self.unet, train_sched, self.scheduler).eval()
317
+
318
+ def add_controlnet(self, controlnet: Optional[diffusers.ControlNetModel] = None, conditioning_scale=1.0):
319
+ self.prepare()
320
+ self.unet = DepthControlUNet(self.unet, controlnet, conditioning_scale)
321
+ return SuperNet(OrderedDict([('controlnet', self.unet.controlnet)]))
322
+
323
+ def encode_condition_image(self, image: torch.Tensor):
324
+ image = self.vae.encode(image).latent_dist.sample()
325
+ return image
326
+
327
+ def prepare_conditions(self, image: Image.Image, depth_image: Image.Image = None, guidance_scale=4.0, prompt="", num_images_per_prompt=1):
328
+ # image = to_rgb_image(image)
329
+ image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values
330
+ image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values
331
+ if depth_image is not None and hasattr(self.unet, "controlnet"):
332
+ depth_image = to_rgb_image(depth_image)
333
+ depth_image = self.depth_transforms_multi(depth_image).to(
334
+ device=self.unet.controlnet.device, dtype=self.unet.controlnet.dtype
335
+ )
336
+ image = image_1.to(device=self.vae.device, dtype=self.vae.dtype)
337
+ image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype)
338
+
339
+ cond_lat = self.encode_condition_image(image)
340
+ if guidance_scale > 1:
341
+ negative_lat = self.encode_condition_image(torch.zeros_like(image))
342
+ cond_lat = torch.cat([negative_lat, cond_lat])
343
+ encoded = self.vision_encoder(image_2, output_hidden_states=False)
344
+ global_embeds = encoded.image_embeds
345
+ global_embeds = global_embeds.unsqueeze(-2)
346
+
347
+ if hasattr(self, "encode_prompt"):
348
+ encoder_hidden_states = self.encode_prompt(
349
+ prompt,
350
+ self.device,
351
+ num_images_per_prompt,
352
+ False
353
+ )[0]
354
+ else:
355
+ encoder_hidden_states = self._encode_prompt(
356
+ prompt,
357
+ self.device,
358
+ num_images_per_prompt,
359
+ False
360
+ )
361
+ ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1)
362
+ encoder_hidden_states = encoder_hidden_states + global_embeds * ramp
363
+ cak = dict(cond_lat=cond_lat)
364
+ if hasattr(self.unet, "controlnet"):
365
+ cak['control_depth'] = depth_image
366
+ device = self._execution_device
367
+ do_classifier_free_guidance = guidance_scale > 1.0
368
+ prompt_embeds = self._encode_prompt(
369
+ None,
370
+ device,
371
+ num_images_per_prompt,
372
+ do_classifier_free_guidance,
373
+ negative_prompt=None,
374
+ prompt_embeds=encoder_hidden_states,
375
+ negative_prompt_embeds=None,
376
+ lora_scale=None,
377
+ )
378
+ return prompt_embeds, cak
379
+
380
+ @torch.no_grad()
381
+ def __call__(
382
+ self,
383
+ image: Image.Image = None,
384
+ prompt = "",
385
+ *args,
386
+ num_images_per_prompt: Optional[int] = 1,
387
+ guidance_scale=4.0,
388
+ depth_image: Image.Image = None,
389
+ output_type: Optional[str] = "pil",
390
+ width=640,
391
+ height=960,
392
+ num_inference_steps=28,
393
+ return_dict=True,
394
+ **kwargs
395
+ ):
396
+ self.prepare()
397
+ if image is None:
398
+ raise ValueError("Inputting embeddings not supported for this pipeline. Please pass an image.")
399
+ assert not isinstance(image, torch.Tensor)
400
+ # image = to_rgb_image(image)
401
+ # image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values
402
+ # image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values
403
+ # if depth_image is not None and hasattr(self.unet, "controlnet"):
404
+ # depth_image = to_rgb_image(depth_image)
405
+ # depth_image = self.depth_transforms_multi(depth_image).to(
406
+ # device=self.unet.controlnet.device, dtype=self.unet.controlnet.dtype
407
+ # )
408
+ # image = image_1.to(device=self.vae.device, dtype=self.vae.dtype)
409
+ # image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype)
410
+ # cond_lat = self.encode_condition_image(image)
411
+ # if guidance_scale > 1:
412
+ # negative_lat = self.encode_condition_image(torch.zeros_like(image))
413
+ # cond_lat = torch.cat([negative_lat, cond_lat])
414
+ # encoded = self.vision_encoder(image_2, output_hidden_states=False)
415
+ # global_embeds = encoded.image_embeds
416
+ # global_embeds = global_embeds.unsqueeze(-2)
417
+
418
+ # if hasattr(self, "encode_prompt"):
419
+ # encoder_hidden_states = self.encode_prompt(
420
+ # prompt,
421
+ # self.device,
422
+ # num_images_per_prompt,
423
+ # False
424
+ # )[0]
425
+ # else:
426
+ # encoder_hidden_states = self._encode_prompt(
427
+ # prompt,
428
+ # self.device,
429
+ # num_images_per_prompt,
430
+ # False
431
+ # )
432
+ # ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1)
433
+ # encoder_hidden_states = encoder_hidden_states + global_embeds * ramp
434
+ # cak = dict(cond_lat=cond_lat)
435
+ # if hasattr(self.unet, "controlnet"):
436
+ # cak['control_depth'] = depth_image
437
+ # device = self._execution_device
438
+ # do_classifier_free_guidance = guidance_scale > 1.0
439
+ # prompt_embeds = self._encode_prompt(
440
+ # None,
441
+ # device,
442
+ # num_images_per_prompt,
443
+ # do_classifier_free_guidance,
444
+ # negative_prompt=None,
445
+ # prompt_embeds=encoder_hidden_states,
446
+ # negative_prompt_embeds=None,
447
+ # lora_scale=None,
448
+ # )
449
+
450
+ prompt_embeds, cak = self.prepare_conditions(image, depth_image, guidance_scale, prompt)
451
+
452
+ device = self._execution_device
453
+ self.scheduler.set_timesteps(num_inference_steps, device=device)
454
+ timesteps = self.scheduler.timesteps
455
+
456
+ generator = None
457
+ # 5. Prepare latent variables
458
+ num_channels_latents = self.unet.config.in_channels
459
+ latents = torch.randn([4, num_channels_latents, height//self.vae_scale_factor, width//self.vae_scale_factor], device=device, dtype=prompt_embeds.dtype)
460
+ # latents = torch.load("latents.pt").to(device, dtype=prompt_embeds.dtype)[:4]
461
+ do_classifier_free_guidance = guidance_scale > 1.0
462
+ # # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
463
+ # extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta=0.0)
464
+
465
+ # 7. Denoising loop
466
+ num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
467
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
468
+ for i, t in enumerate(timesteps):
469
+ # expand the latents if we are doing classifier free guidance
470
+ latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
471
+ latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
472
+
473
+ # predict the noise residual
474
+ noise_pred = self.unet(
475
+ latent_model_input,
476
+ t,
477
+ encoder_hidden_states=prompt_embeds,
478
+ cross_attention_kwargs=cak,
479
+ return_dict=False,
480
+ )[0]
481
+
482
+ # perform guidance
483
+ if do_classifier_free_guidance:
484
+ noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
485
+ noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
486
+
487
+ # if do_classifier_free_guidance and guidance_rescale > 0.0:
488
+ # # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
489
+ # noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)
490
+
491
+ # compute the previous noisy sample x_t -> x_t-1
492
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
493
+
494
+ # call the callback, if provided
495
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
496
+ progress_bar.update()
497
+ # if callback is not None and i % callback_steps == 0:
498
+ # callback(i, t, latents)
499
+
500
+ latents = unscale_latents(latents)
501
+ if not output_type == "latent":
502
+ image = unscale_image(self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0])
503
+ else:
504
+ image = latents
505
+
506
+ image = self.image_processor.postprocess(image, output_type=output_type)
507
+ if not return_dict:
508
+ return (image,)
509
+
510
+ return ImagePipelineOutput(images=image)