--- language: - zh license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - cer-char - cer-rome model-index: - name: Whisper medium nan-tw results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_11_0 nan-tw type: mozilla-foundation/common_voice_11_0 config: nan-tw split: train args: nan-tw metrics: - name: Cer-char type: cer value: 45.038167938931295 - name: Cer-rome type: cer value: 31.56572704437622 --- # Whisper medium nan-tw This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 nan-tw dataset. It achieves the following results on the evaluation set: - Loss: 0.9100 - Wer: 42.0709 - Cer: 22.3681 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.0568 | 5.0 | 1000 | 0.7769 | 48.2706 | 26.0890 | | 0.0057 | 10.0 | 2000 | 0.8438 | 44.0722 | 23.9270 | | 0.0041 | 15.01 | 3000 | 0.8740 | 42.8540 | 22.9554 | | 0.0001 | 20.01 | 4000 | 0.9041 | 42.1797 | 22.5496 | | 0.0001 | 25.01 | 5000 | 0.9100 | 42.0709 | 22.3681 | ### Framework versions - Transformers 4.27.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.0 - Tokenizers 0.13.2