File size: 9,902 Bytes
99d7060 f1a3258 8829878 f1a3258 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 |
---
license: apache-2.0
---
# ZH-CLIP: A Chinese CLIP Model
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/thu-ml/ZH-CLIPZH-CLIP)
## Models
You can download **ZH-CLIP** model from [🤗 thu-ml/zh-clip-vit-roberta-large-patch14](https://huggingface.co/thu-ml/zh-clip-vit-roberta-large-patch14). The model structure is shown below:
* Vision encoder network structure is the same as [openai/clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14), and initialize with [laion/CLIP-ViT-L-14-laion2B-s32B-b82K](https://huggingface.co/laion/CLIP-ViT-L-14-laion2B-s32B-b82K).
* Text encoder network struceure is the same as [hfl/chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) and initialized.
## Results
#### COCO-CN Retrieval (Official Test Set):
<table>
<thead>
<tr>
<th rowspan="2">Model</th>
<th colspan="4">Text-to-Image</th>
<th colspan="4">Image-to-Text</th>
</tr>
<tr>
<th>R@1</th>
<th>R@5</th>
<th>R@10</th>
<th>Mean</th>
<th>R@1</th>
<th>R@5</th>
<th>R@10</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clip-Chinese</td>
<td>22.60</td>
<td>50.04</td>
<td>65.24</td>
<td>45.96</td>
<td>22.8</td>
<td>49.8</td>
<td>64.1</td>
<td>45.57</td>
</tr>
<tr>
<td>mclip</td>
<td>56.51</td>
<td>83.57</td>
<td>90.79</td>
<td>76.95</td>
<td>59.9</td>
<td>87.3</td>
<td>94.1</td>
<td>80.43</td>
</tr>
<tr>
<td>Taiyi-CLIP</td>
<td>52.52</td>
<td>81.10</td>
<td>89.93</td>
<td>74.52</td>
<td>45.80</td>
<td>75.80</td>
<td>88.10</td>
<td>69.90</td>
</tr>
<tr>
<td>CN-CLIP</td>
<td>64.10</td>
<td>88.79</td>
<td>94.40</td>
<td>82.43</td>
<td>61.00</td>
<td>84.40</td>
<td>93.10</td>
<td>79.5</td>
</tr>
<tr>
<td>altclip-xlmr-l</td>
<td>62.87</td>
<td>87.18</td>
<td>94.01</td>
<td>81.35</td>
<td>63.3</td>
<td>88.3</td>
<td>95.3</td>
<td>82.3</td>
</tr>
<tr>
<td>ZH-CLIP</td>
<td><strong>68.00</strong></td>
<td><strong>89.46</strong></td>
<td><strong>95.44</strong></td>
<td><strong>84.30</strong></td>
<td><strong>68.50</strong></td>
<td><strong>90.10</strong></td>
<td><strong>96.50</strong></td>
<td><strong>85.03</strong></td>
</tr>
</tbody>
</table>
#### Flickr30K-CN Retrieval (Official Test Set):
<table>
<thead>
<tr>
<th rowspan="2">Model</th>
<th colspan="4">Text-to-Image</th>
<th colspan="4">Image-to-Text</th>
</tr>
<tr>
<th>R@1</th>
<th>R@5</th>
<th>R@10</th>
<th>Mean</th>
<th>R@1</th>
<th>R@5</th>
<th>R@10</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clip-Chinese</td>
<td>17.76</td>
<td>40.34</td>
<td>51.88</td>
<td>36.66</td>
<td>30.4</td>
<td>55.30</td>
<td>67.10</td>
<td>50.93</td>
</tr>
<tr>
<td>mclip</td>
<td>62.3</td>
<td>86.42</td>
<td>92.58</td>
<td>80.43</td>
<td>84.4</td>
<td>97.3</td>
<td>98.9</td>
<td>93.53</td>
</tr>
<tr>
<td>Taiyi-CLIP</td>
<td>53.5</td>
<td>80.5</td>
<td>87.24</td>
<td>73.75</td>
<td>65.4</td>
<td>90.6</td>
<td>95.7</td>
<td>83.9</td>
</tr>
<tr>
<td>CN-CLIP</td>
<td>67.98</td>
<td>89.54</td>
<td>94.46</td>
<td>83.99</td>
<td>81.2</td>
<td>96.6</td>
<td>98.2</td>
<td>92.0</td>
</tr>
<tr>
<td>altclip-xlmr-l</td>
<td>69.16</td>
<td>89.94</td>
<td><strong>94.5</strong></td>
<td>84.53</td>
<td>85.1</td>
<td><strong>97.7</strong></td>
<td><strong>99.2</strong></td>
<td>94.0</td>
</tr>
<tr>
<td>ZH-CLIP</td>
<td><strong>69.64</strong></td>
<td><strong>90.14</strong></td>
<td>94.3</td>
<td><strong>84.69</strong></td>
<td><strong>86.6</strong></td>
<td>97.6</td>
<td>98.8</td>
<td><strong>94.33</strong></td>
</tr>
</tbody>
</table>
#### Muge Text-to-Image Retrieval (Official Validation Set):
<table>
<thead>
<tr>
<th rowspan="2">Model</th>
<th colspan="4">Text-to-Image</th>
</tr>
<tr>
<th>R@1</th>
<th>R@5</th>
<th>R@10</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clip-Chinese</td>
<td>15.06</td>
<td>34.96</td>
<td>46.21</td>
<td>32.08</td>
</tr>
<tr>
<td>mclip</td>
<td>22.34</td>
<td>41.15</td>
<td>50.26</td>
<td>37.92</td>
</tr>
<tr>
<td>Taiyi-CLIP</td>
<td>42.09</td>
<td>67.75</td>
<td>77.21</td>
<td>62.35</td>
</tr>
<tr>
<td>cn-clip</td>
<td>56.25</td>
<td><strong>79.87</strong></td>
<td>86.50</td>
<td>74.21</td>
</tr>
<tr>
<td>altclip-xlmr-l</td>
<td>29.69</td>
<td>49.92</td>
<td>58.87</td>
<td>46.16</td>
</tr>
<tr>
<td>ZH-CLIP</td>
<td><strong>56.75</strong></td>
<td>79.75</td>
<td><strong>86.66</strong></td>
<td><strong>74.38</strong></td>
</tr>
</tbody>
</table>
#### Zero-shot Image Classification:
<table>
<thead>
<tr>
<th rowspan="2">Model</th>
<th colspan="11">Zero-shot Classification (ACC1)</th>
</tr>
<tr>
<th>CIFAR10</th>
<th>CIFAR100</th>
<th>DTD</th>
<th>EuroSAT</th>
<th>FER</th>
<th>FGVC</th>
<th>KITTI</th>
<th>MNIST</th>
<th>PC</th>
<th>VOC</th>
<th>ImageNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clip-Chinese</td>
<td>86.85</td>
<td>44.21</td>
<td>18.40</td>
<td>34.86</td>
<td>14.21</td>
<td>3.87</td>
<td>32.63</td>
<td>14.37</td>
<td>52.49</td>
<td>67.73</td>
<td>22.22</td>
</tr>
<tr>
<td>mclip</td>
<td>92.88</td>
<td>65.54</td>
<td>29.57</td>
<td>46.76</td>
<td>41.18</td>
<td>7.20</td>
<td>23.21</td>
<td>52.80</td>
<td>51.64</td>
<td>77.56</td>
<td>42.99</td>
</tr>
<tr>
<td>Taiyi-CLIP</td>
<td>95.62</td>
<td>73.30</td>
<td>40.69</td>
<td><strong>61.62</strong></td>
<td>36.22</td>
<td>13.98</td>
<td><strong>41.21</strong></td>
<td><strong>73.91</strong></td>
<td>50.02</td>
<td>75.28</td>
<td>49.82</td>
</tr>
<tr>
<td>CN-CLIP</td>
<td>94.75</td>
<td>75.04</td>
<td>44.73</td>
<td>52.34</td>
<td>48.57</td>
<td>20.55</td>
<td>20.11</td>
<td>61.99</td>
<td><strong>62.59</strong></td>
<td><strong>79.12</strong></td>
<td>53.40</td>
</tr>
<tr>
<td>Altclip-xlmr-l</td>
<td>95.49</td>
<td>77.29</td>
<td>42.07</td>
<td>56.96</td>
<td><strong>51.52</strong></td>
<td><strong>26.85</strong></td>
<td>24.89</td>
<td>65.68</td>
<td>50.02</td>
<td>77.99</td>
<td><strong>59.21</strong></td>
</tr>
<tr>
<td>ZH-CLIP</td>
<td><strong>97.08</strong></td>
<td><strong>80.73</strong></td>
<td><strong>47.66</strong></td>
<td>51.58</td>
<td>48.48</td>
<td>20.73</td>
<td>20.11</td>
<td>61.94</td>
<td>62.31</td>
<td>78.07</td>
<td>56.87</td>
</tr>
</tbody>
</table>
## Getting Started
### Dependency
* python >= 3.9
* pip install -r requirements.txt
### Inference
You can clone code from https://github.com/thu-ml/zh-clip
```python
from PIL import Image
import requests
from models.zhclip import ZhCLIPProcessor, ZhCLIPModel # Code in https://github.com/thu-ml/zh-clip
version = 'thu-ml/zh-clip-vit-roberta-large-patch14'
model = ZhCLIPModel.from_pretrained(version)
processor = ZhCLIPProcessor.from_pretrained(version)
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(text=["一只猫", "一只狗"], images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
image_features = outputs.image_features
text_features = outputs.text_features
text_probs = (image_features @ text_features.T).softmax(dim=-1)
```
### Other Chinese CLIP Models
In addition, to compare the effectiveness of different methods, the inference methods of other Chinese CLIP models have been integrated. For the convenience of use, the inference code has also been made public, and please contact us if there is any infringement. The code only implements models at the same level as clip-vit-large-patch14, but it may be adapted for the use of more different versions of models in the future.
| # | model | alias |
| :----: | :---------- | :---------- |
| 0 | [ZH-CLIP](https://github.com/thu-ml/zh-clip) | zhclip |
| 1 | [AltCLIP](https://github.com/FlagAI-Open/FlagAI/tree/master/examples/AltCLIP) | altclip |
| 2 | [Chinese-CLIP](https://github.com/OFA-Sys/Chinese-CLIP) | cnclip |
| 3 | [TaiyiCLIP](https://github.com/IDEA-CCNL/Fengshenbang-LM) | taiyiclip |
| 4 | [Multilingual-CLIP](https://github.com/FreddeFrallan/Multilingual-CLIP) | mclip |
| 5 | [CLIP-Chinese](https://github.com/yangjianxin1/CLIP-Chinese) | clip-chinese |
Usage in [inference.py](https://github.com/thu-ml/zh-clip/blob/main/inference.py)
|