--- license: apache-2.0 tags: - protein language model - generated_from_trainer datasets: - train metrics: - spearmanr model-index: - name: tape-fluorescence-prediction-RITA_s results: - task: name: Text Classification type: text-classification dataset: name: cradle-bio/tape-fluorescence type: train metrics: - name: Spearmanr type: spearmanr value: 0.32362885705173594 --- # tape-fluorescence-prediction-RITA_s This model is a fine-tuned version of [lightonai/RITA_s](https://huggingface.co/lightonai/RITA_s) on the cradle-bio/tape-fluorescence dataset. It achieves the following results on the evaluation set: - Loss: 0.7029 - Spearmanr: 0.3236 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 17 - gradient_accumulation_steps: 128 - total_train_batch_size: 4096 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearmanr | |:-------------:|:-----:|:----:|:---------------:|:---------:| | 7.0854 | 0.85 | 4 | 0.8055 | 0.0686 | | 0.8791 | 1.85 | 8 | 0.7455 | 0.1288 | | 0.822 | 2.85 | 12 | 0.7385 | 0.2069 | | 0.8155 | 3.85 | 16 | 0.7346 | 0.2680 | | 0.8139 | 4.85 | 20 | 0.7345 | 0.3102 | | 0.81 | 5.85 | 24 | 0.7375 | 0.3349 | | 0.805 | 6.85 | 28 | 0.7211 | 0.3298 | | 0.799 | 7.85 | 32 | 0.7114 | 0.3282 | | 0.784 | 8.85 | 36 | 0.7132 | 0.3220 | | 0.6627 | 9.85 | 40 | 0.7029 | 0.3236 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1