File size: 1,946 Bytes
567e2ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1b5066
 
567e2ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1b5066
567e2ba
 
 
 
d1b5066
 
 
 
 
 
 
 
 
 
 
 
567e2ba
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: cc-by-4.0
tags:
- generated_from_trainer
model-index:
- name: nb-bert-base-ctr-regression
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# nb-bert-base-ctr-regression

This model is a fine-tuned version of [NbAiLab/nb-bert-base](https://huggingface.co/NbAiLab/nb-bert-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0073
- Mse: 0.0073

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Mse    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 0.0106        | 1.0   | 1103  | 0.0069          | 0.0069 |
| 0.0073        | 2.0   | 2206  | 0.0072          | 0.0072 |
| 0.0058        | 3.0   | 3309  | 0.0063          | 0.0063 |
| 0.0038        | 4.0   | 4412  | 0.0073          | 0.0073 |
| 0.0025        | 5.0   | 5515  | 0.0064          | 0.0064 |
| 0.0019        | 6.0   | 6618  | 0.0065          | 0.0065 |
| 0.0014        | 7.0   | 7721  | 0.0066          | 0.0066 |
| 0.0011        | 8.0   | 8824  | 0.0067          | 0.0067 |
| 0.0008        | 9.0   | 9927  | 0.0066          | 0.0066 |
| 0.0007        | 10.0  | 11030 | 0.0066          | 0.0066 |


### Framework versions

- Transformers 4.17.0
- Pytorch 1.10.2+cu113
- Datasets 1.18.4
- Tokenizers 0.12.1