File size: 1,998 Bytes
4c6596e
 
 
 
 
 
 
 
 
9658555
 
4c6596e
 
9658555
 
 
 
 
 
 
 
 
 
 
 
 
 
a6a57b2
4c6596e
 
 
 
 
 
 
 
 
9658555
 
 
4c6596e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9658555
4c6596e
 
9658555
 
 
 
 
 
 
 
 
4c6596e
 
 
 
 
a6a57b2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
datasets:
- PolyAI/minds14
metrics:
- wer
model-index:
- name: Whisper tiny
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: minds14
      type: PolyAI/minds14
      config: en-US
      split: train
      args: en-US
    metrics:
    - name: Wer
      type: wer
      value: 0.3612750885478158
pipeline_tag: automatic-speech-recognition
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper tiny

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the minds14 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6491
- Wer Ortho: 0.3572
- Wer: 0.3613

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 8
- training_steps: 45
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer Ortho | Wer    |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|
| 0.0569        | 0.2679 | 15   | 0.6113          | 0.3337    | 0.3294 |
| 0.0364        | 0.5357 | 30   | 0.6443          | 0.3603    | 0.3554 |
| 0.0916        | 0.8036 | 45   | 0.6491          | 0.3572    | 0.3613 |


### Framework versions

- Transformers 4.40.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1