--- library_name: transformers license: apache-2.0 base_model: - rhymes-ai/Aria-sequential_mlp - rhymes-ai/Aria pipeline_tag: image-text-to-text --- # Aria-sequential_mlp-bnb_nf4 BitsAndBytes NF4 quantization from [Aria-sequential_mlp](https://huggingface.co/rhymes-ai/Aria-sequential_mlp), requires about 15.5 GB of VRAM and runs on a RTX 3090 and (not really practical, only without `device_map=auto`) on a RTX 4060 Ti 16 GB. Currently the model is not 5 GB sharded, as this seems to [cause problems](https://stackoverflow.com/questions/79068298/valueerror-supplied-state-dict-for-layers-does-not-contain-bitsandbytes-an) when loading serialized BNB models. This might make it impossible to load the model in free-tier Colab. ### Installation ``` pip install transformers==4.45.0 accelerate==0.34.1 sentencepiece==0.2.0 torchvision requests torch Pillow bitsandbytes pip install flash-attn --no-build-isolation ``` ### Inference Run this model with: ``` python import requests import torch from PIL import Image from transformers import AutoModelForCausalLM, AutoProcessor, BitsAndBytesConfig torch.cuda.set_device(0) model_id_or_path = "thwin27/Aria-sequential_mlp-bnb_nf4" model = AutoModelForCausalLM.from_pretrained(model_id_or_path, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True) processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True) image_path = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png" image = Image.open(requests.get(image_path, stream=True).raw) messages = [ { "role": "user", "content": [ {"text": None, "type": "image"}, {"text": "what is the image?", "type": "text"}, ], } ] text = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor(text=text, images=image, return_tensors="pt") inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype) inputs = {k: v.to(model.device) for k, v in inputs.items()} with torch.inference_mode(), torch.amp.autocast("cuda", dtype=torch.bfloat16): output = model.generate( **inputs, max_new_tokens=500, stop_strings=["<|im_end|>"], tokenizer=processor.tokenizer, do_sample=True, temperature=0.9, ) output_ids = output[0][inputs["input_ids"].shape[1]:] result = processor.decode(output_ids, skip_special_tokens=True) print(result) print(f'Max allocated memory: {torch.cuda.max_memory_allocated(device="cuda") / 1024 ** 3:.3f}GiB') ``` ### Quantization Quantization created with: ``` python from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig model_id = "rhymes-ai/Aria-sequential_mlp" nf4_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, llm_int8_enable_fp32_cpu_offload=True, llm_int8_skip_modules=["language_model.lm_head", "multi_modal_projector", "vision_tower"], ) model_nf4 = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=nf4_config) ```