tiagoblima
commited on
Commit
•
15e6b15
1
Parent(s):
5df5bee
End of training
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: bert-base-cased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: newsdata-cls
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# newsdata-cls
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.0625
|
21 |
+
- Accuracy: 0.8124
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 2e-05
|
41 |
+
- train_batch_size: 2
|
42 |
+
- eval_batch_size: 2
|
43 |
+
- seed: 42
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- num_epochs: 1
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:------:|:-----:|:---------------:|:--------:|
|
52 |
+
| 1.342 | 0.0859 | 5000 | 1.7155 | 0.6436 |
|
53 |
+
| 1.2536 | 0.1718 | 10000 | 1.3484 | 0.7139 |
|
54 |
+
| 1.1442 | 0.2577 | 15000 | 1.2988 | 0.7495 |
|
55 |
+
| 1.0014 | 0.3436 | 20000 | 1.4252 | 0.7492 |
|
56 |
+
| 0.8824 | 0.4295 | 25000 | 1.2261 | 0.7733 |
|
57 |
+
| 0.9017 | 0.5155 | 30000 | 1.1556 | 0.7840 |
|
58 |
+
| 0.7934 | 0.6014 | 35000 | 1.1842 | 0.7917 |
|
59 |
+
| 0.9238 | 0.6873 | 40000 | 1.0854 | 0.7990 |
|
60 |
+
| 0.9034 | 0.7732 | 45000 | 1.1318 | 0.7978 |
|
61 |
+
| 0.7515 | 0.8591 | 50000 | 1.0742 | 0.8049 |
|
62 |
+
| 0.7735 | 0.9450 | 55000 | 1.0625 | 0.8124 |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.41.2
|
68 |
+
- Pytorch 2.3.1+cu121
|
69 |
+
- Datasets 2.20.0
|
70 |
+
- Tokenizers 0.19.1
|