tiagoblima commited on
Commit
15e6b15
1 Parent(s): 5df5bee

End of training

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: bert-base-cased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ model-index:
9
+ - name: newsdata-cls
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # newsdata-cls
17
+
18
+ This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 1.0625
21
+ - Accuracy: 0.8124
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 2e-05
41
+ - train_batch_size: 2
42
+ - eval_batch_size: 2
43
+ - seed: 42
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - num_epochs: 1
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
51
+ |:-------------:|:------:|:-----:|:---------------:|:--------:|
52
+ | 1.342 | 0.0859 | 5000 | 1.7155 | 0.6436 |
53
+ | 1.2536 | 0.1718 | 10000 | 1.3484 | 0.7139 |
54
+ | 1.1442 | 0.2577 | 15000 | 1.2988 | 0.7495 |
55
+ | 1.0014 | 0.3436 | 20000 | 1.4252 | 0.7492 |
56
+ | 0.8824 | 0.4295 | 25000 | 1.2261 | 0.7733 |
57
+ | 0.9017 | 0.5155 | 30000 | 1.1556 | 0.7840 |
58
+ | 0.7934 | 0.6014 | 35000 | 1.1842 | 0.7917 |
59
+ | 0.9238 | 0.6873 | 40000 | 1.0854 | 0.7990 |
60
+ | 0.9034 | 0.7732 | 45000 | 1.1318 | 0.7978 |
61
+ | 0.7515 | 0.8591 | 50000 | 1.0742 | 0.8049 |
62
+ | 0.7735 | 0.9450 | 55000 | 1.0625 | 0.8124 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.41.2
68
+ - Pytorch 2.3.1+cu121
69
+ - Datasets 2.20.0
70
+ - Tokenizers 0.19.1