File size: 4,038 Bytes
727b63f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: mit
base_model: HuggingFaceH4/mistral-7b-sft-beta
tags:
- generated_from_trainer
model-index:
- name: zephyr-7b-dpo-full-beta-0.2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-dpo-full-beta-0.2

This model is a fine-tuned version of [HuggingFaceH4/mistral-7b-sft-beta](https://huggingface.co/HuggingFaceH4/mistral-7b-sft-beta) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7903
- Rewards/chosen: -3.2220
- Rewards/rejected: -7.3367
- Rewards/accuracies: 0.7659
- Rewards/margins: 4.1147
- Logps/rejected: -282.6258
- Logps/chosen: -314.5996
- Logits/rejected: -2.6943
- Logits/chosen: -2.6970

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-07
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.5631        | 0.26  | 500  | 0.5260          | 0.0288         | -1.2082          | 0.75               | 1.2371          | -251.9833      | -298.3453    | -2.9467         | -2.9577       |
| 0.5432        | 0.52  | 1000 | 0.5888          | -0.0335        | -1.8482          | 0.7540             | 1.8147          | -255.1831      | -298.6568    | -2.8465         | -2.8476       |
| 0.5368        | 0.77  | 1500 | 0.5860          | -0.4836        | -2.3300          | 0.7619             | 1.8464          | -257.5920      | -300.9073    | -2.8455         | -2.8445       |
| 0.0615        | 1.03  | 2000 | 0.6024          | -0.5971        | -2.6919          | 0.7778             | 2.0948          | -259.4018      | -301.4749    | -2.8687         | -2.8639       |
| 0.0817        | 1.29  | 2500 | 0.6655          | -1.3554        | -3.8426          | 0.7738             | 2.4872          | -265.1552      | -305.2667    | -2.8257         | -2.8254       |
| 0.0617        | 1.55  | 3000 | 0.6421          | -1.2552        | -3.7613          | 0.75               | 2.5062          | -264.7488      | -304.7651    | -2.7744         | -2.7683       |
| 0.0765        | 1.81  | 3500 | 0.6582          | -1.1492        | -4.0394          | 0.7659             | 2.8902          | -266.1391      | -304.2354    | -2.7403         | -2.7389       |
| 0.0178        | 2.07  | 4000 | 0.6797          | -1.8485        | -5.2549          | 0.7619             | 3.4064          | -272.2166      | -307.7317    | -2.7310         | -2.7273       |
| 0.0165        | 2.32  | 4500 | 0.7359          | -2.2096        | -6.0498          | 0.7817             | 3.8401          | -276.1910      | -309.5376    | -2.7006         | -2.7001       |
| 0.0094        | 2.58  | 5000 | 0.7864          | -2.8828        | -6.8542          | 0.7738             | 3.9713          | -280.2130      | -312.9036    | -2.7185         | -2.7196       |
| 0.0094        | 2.84  | 5500 | 0.7953          | -3.1897        | -7.3009          | 0.7579             | 4.1112          | -282.4464      | -314.4378    | -2.6987         | -2.7012       |


### Framework versions

- Transformers 4.35.0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1