File size: 6,704 Bytes
39a7fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# coding=utf-8
# Copyright 2023 the Falcon authors and HuggingFace Inc. team.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Falcon configuration"""
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)

FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "tiiuae/falcon-40b": "https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json",
    "tiiuae/falcon-7b": "https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json",
}


class FalconConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`FalconModel`]. It is used to instantiate a Falcon
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the
    [tiiuae/falcon-7b](https://huggingface.co/tiiuae/falcon-7b) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 65024):
            Vocabulary size of the Falcon model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`FalconModel`]
        hidden_size (`int`, *optional*, defaults to 4544):
            Dimension of the hidden representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 71):
            Number of attention heads for each attention layer in the Transformer encoder.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether the model should return the last key/values attentions (not used by all models). Only relevant if
            `config.is_decoder=True`.
        layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
            The epsilon used by the layer normalization layers.
        hidden_dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for MLP layers.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout probability for attention layers.
        num_kv_heads (`int`, *optional*):
            Number of key-value heads to use per attention layer. If unset, defaults to the same value as
            `num_attention_heads`.
        alibi (`bool`, *optional*, defaults to `False`):
            Whether to use ALiBi positional biases during self-attention.
        new_decoder_architecture (`bool`, *optional*, defaults to `False`):
            Whether to use the new (Falcon-40B) decoder architecture. If `True`, the `multi_query` and `parallel_attn`
            arguments are ignored, as the new decoder always uses parallel attention.
        multi_query (`bool`, *optional*, defaults to `True`):
            Whether to use multi-query attention in the decoder. Ignored when `new_decoder_architecture` is `True`.
        parallel_attn (`bool`, *optional*, defaults to `True`):
            Whether to compute attention in parallel with the feedforward layer. If False, they are consecutive
            instead, as in the original Transformer architecture. Ignored when `new_decoder_architecture` is `True`.
        bias (`bool`, *optional*, defaults to `False`):
            Whether to use bias on Linear layers.
        bos_token_id (`int`, *optional*, defaults to 11):
            The id of the "beginning-of-sequence" token.
        eos_token_id (`int`, *optional*, defaults to 11):
            The id of the "end-of-sequence" token.

    Example:

    ```python
    >>> from transformers import FalconModel, FalconConfig

    >>> # Initializing a small (2-layer) Falcon configuration
    >>> configuration = FalconConfig(num_hidden_layers=2)

    >>> # Initializing a model from the small configuration
    >>> model = FalconModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "falcon"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=65024,
        hidden_size=4544,
        num_hidden_layers=32,
        num_attention_heads=71,
        layer_norm_epsilon=1e-5,
        initializer_range=0.02,
        use_cache=True,
        hidden_dropout=0.0,
        attention_dropout=0.0,
        num_kv_heads=None,
        alibi=False,
        new_decoder_architecture=False,
        multi_query=True,
        parallel_attn=True,
        bias=False,
        bos_token_id=11,
        eos_token_id=11,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        # Backward compatibility with n_embed kwarg
        n_embed = kwargs.pop("n_embed", None)
        self.hidden_size = hidden_size if n_embed is None else n_embed
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.layer_norm_epsilon = layer_norm_epsilon
        self.initializer_range = initializer_range
        self.use_cache = use_cache
        self.hidden_dropout = hidden_dropout
        self.attention_dropout = attention_dropout

        self.bos_token_id = bos_token_id
        self.eos_token_id = eos_token_id
        self.num_kv_heads = num_attention_heads if num_kv_heads is None else num_kv_heads
        self.alibi = alibi
        self.new_decoder_architecture = new_decoder_architecture
        self.multi_query = multi_query  # Ignored when new_decoder_architecture is True
        self.parallel_attn = parallel_attn
        self.bias = bias

        super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)

    @property
    def head_dim(self):
        return self.hidden_size // self.num_attention_heads

    @property
    def rotary(self):
        return not self.alibi