Add model
Browse files- README.md +308 -0
- config.json +35 -0
- pytorch_model.bin +3 -0
README.md
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- image-classification
|
4 |
+
- timm
|
5 |
+
library_tag: timm
|
6 |
+
license: apache-2.0
|
7 |
+
datasets:
|
8 |
+
- imagenet-1k
|
9 |
+
- laion-2b
|
10 |
+
---
|
11 |
+
# Model card for convnext_base.clip_laion2b_augreg_ft_in1k
|
12 |
+
|
13 |
+
A ConvNeXt image classification model. CLIP image tower weights pretrained in [OpenCLIP](https://github.com/mlfoundations/open_clip) on LAION and fine-tuned on ImageNet-1k in `timm` by Ross Wightman.
|
14 |
+
|
15 |
+
Please see related OpenCLIP model cards for more details on pretrain:
|
16 |
+
* https://huggingface.co/laion/CLIP-convnext_large_d.laion2B-s26B-b102K-augreg
|
17 |
+
* https://huggingface.co/laion/CLIP-convnext_base_w-laion2B-s13B-b82K-augreg
|
18 |
+
* https://huggingface.co/laion/CLIP-convnext_base_w_320-laion_aesthetic-s13B-b82K
|
19 |
+
|
20 |
+
|
21 |
+
## Model Details
|
22 |
+
- **Model Type:** Image classification / feature backbone
|
23 |
+
- **Model Stats:**
|
24 |
+
- Params (M): 88.6
|
25 |
+
- GMACs: 20.1
|
26 |
+
- Activations (M): 37.6
|
27 |
+
- Image size: 256 x 256
|
28 |
+
- **Papers:**
|
29 |
+
- LAION-5B: An open large-scale dataset for training next generation image-text models: https://arxiv.org/abs/2210.08402
|
30 |
+
- A ConvNet for the 2020s: https://arxiv.org/abs/2201.03545
|
31 |
+
- Learning Transferable Visual Models From Natural Language Supervision: https://arxiv.org/abs/2103.00020
|
32 |
+
- **Original:** https://github.com/mlfoundations/open_clip
|
33 |
+
- **Pretrain Dataset:** LAION-2B
|
34 |
+
- **Dataset:** ImageNet-1k
|
35 |
+
|
36 |
+
## Model Usage
|
37 |
+
### Image Classification
|
38 |
+
```python
|
39 |
+
from urllib.request import urlopen
|
40 |
+
from PIL import Image
|
41 |
+
import timm
|
42 |
+
|
43 |
+
img = Image.open(
|
44 |
+
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
|
45 |
+
|
46 |
+
model = timm.create_model('convnext_base.clip_laion2b_augreg_ft_in1k', pretrained=True)
|
47 |
+
model = model.eval()
|
48 |
+
|
49 |
+
# get model specific transforms (normalization, resize)
|
50 |
+
data_config = timm.data.resolve_model_data_config(model)
|
51 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
52 |
+
|
53 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
54 |
+
|
55 |
+
top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
|
56 |
+
```
|
57 |
+
|
58 |
+
### Feature Map Extraction
|
59 |
+
```python
|
60 |
+
from urllib.request import urlopen
|
61 |
+
from PIL import Image
|
62 |
+
import timm
|
63 |
+
|
64 |
+
img = Image.open(
|
65 |
+
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
|
66 |
+
|
67 |
+
model = timm.create_model(
|
68 |
+
'convnext_base.clip_laion2b_augreg_ft_in1k',
|
69 |
+
pretrained=True,
|
70 |
+
features_only=True,
|
71 |
+
)
|
72 |
+
model = model.eval()
|
73 |
+
|
74 |
+
# get model specific transforms (normalization, resize)
|
75 |
+
data_config = timm.data.resolve_model_data_config(model)
|
76 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
77 |
+
|
78 |
+
output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
|
79 |
+
|
80 |
+
for o in output:
|
81 |
+
# print shape of each feature map in output
|
82 |
+
# e.g. for convnext_base:
|
83 |
+
# torch.Size([1, 128, 56, 56])
|
84 |
+
# torch.Size([1, 256, 28, 28])
|
85 |
+
# torch.Size([1, 512, 14, 14])
|
86 |
+
# torch.Size([1, 1024, 7, 7])
|
87 |
+
print(o.shape)
|
88 |
+
```
|
89 |
+
|
90 |
+
### Image Embeddings
|
91 |
+
```python
|
92 |
+
from urllib.request import urlopen
|
93 |
+
from PIL import Image
|
94 |
+
import timm
|
95 |
+
|
96 |
+
img = Image.open(
|
97 |
+
urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))
|
98 |
+
|
99 |
+
model = timm.create_model(
|
100 |
+
'convnext_base.clip_laion2b_augreg_ft_in1k',
|
101 |
+
pretrained=True,
|
102 |
+
num_classes=0, # remove classifier nn.Linear
|
103 |
+
)
|
104 |
+
model = model.eval()
|
105 |
+
|
106 |
+
# get model specific transforms (normalization, resize)
|
107 |
+
data_config = timm.data.resolve_model_data_config(model)
|
108 |
+
transforms = timm.data.create_transform(**data_config, is_training=False)
|
109 |
+
|
110 |
+
output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
|
111 |
+
|
112 |
+
# or equivalently (without needing to set num_classes=0)
|
113 |
+
|
114 |
+
output = model.forward_features(transforms(img).unsqueeze(0))
|
115 |
+
# output is unpooled (ie.e a (batch_size, num_features, H, W) tensor
|
116 |
+
|
117 |
+
output = model.forward_head(output, pre_logits=True)
|
118 |
+
# output is (batch_size, num_features) tensor
|
119 |
+
```
|
120 |
+
|
121 |
+
## Model Comparison
|
122 |
+
### By Top-1
|
123 |
+
All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP.
|
124 |
+
|
125 |
+
|model |top1 |top5 |img_size|param_count|gmacs |macts |samples_per_sec|batch_size|
|
126 |
+
|----------------------------------------------|------|------|--------|-----------|------|------|---------------|----------|
|
127 |
+
|[convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_512)|88.848|98.742|512 |660.29 |600.81|413.07|28.58 |48 |
|
128 |
+
|[convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_384)|88.668|98.738|384 |660.29 |337.96|232.35|50.56 |64 |
|
129 |
+
|[convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k_384)|88.196|98.532|384 |197.96 |101.1 |126.74|128.94 |128 |
|
130 |
+
|[convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k_384)|87.75 |98.556|384 |350.2 |179.2 |168.99|124.85 |192 |
|
131 |
+
|[convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k_384)|87.646|98.422|384 |88.72 |45.21 |84.49 |209.51 |256 |
|
132 |
+
|[convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k_384)|87.476|98.382|384 |197.77 |101.1 |126.74|194.66 |256 |
|
133 |
+
|[convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k)|87.344|98.218|256 |200.13 |44.94 |56.33 |438.08 |256 |
|
134 |
+
|[convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k)|87.26 |98.248|224 |197.96 |34.4 |43.13 |376.84 |256 |
|
135 |
+
|[convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k)|87.002|98.208|224 |350.2 |60.98 |57.5 |368.01 |256 |
|
136 |
+
|[convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k_384)|86.796|98.264|384 |88.59 |45.21 |84.49 |366.54 |256 |
|
137 |
+
|[convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k)|86.74 |98.022|224 |88.72 |15.38 |28.75 |624.23 |256 |
|
138 |
+
|[convnext_large.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k)|86.636|98.028|224 |197.77 |34.4 |43.13 |581.43 |256 |
|
139 |
+
|[convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_base.clip_laiona_augreg_ft_in1k_384)|86.504|97.97 |384 |88.59 |45.21 |84.49 |368.14 |256 |
|
140 |
+
|[convnextv2_huge.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in1k)|86.256|97.75 |224 |660.29 |115.0 |79.07 |154.72 |256 |
|
141 |
+
|[convnext_small.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_small.in12k_ft_in1k_384)|86.182|97.92 |384 |50.22 |25.58 |63.37 |516.19 |256 |
|
142 |
+
|[convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in1k)|86.154|97.68 |256 |88.59 |20.09 |37.55 |819.86 |256 |
|
143 |
+
|[convnext_base.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k)|85.822|97.866|224 |88.59 |15.38 |28.75 |1037.66 |256 |
|
144 |
+
|[convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k_384)|85.778|97.886|384 |50.22 |25.58 |63.37 |518.95 |256 |
|
145 |
+
|[convnextv2_large.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in1k)|85.742|97.584|224 |197.96 |34.4 |43.13 |375.23 |256 |
|
146 |
+
|[convnext_small.in12k_ft_in1k](https://huggingface.co/timm/convnext_small.in12k_ft_in1k)|85.174|97.506|224 |50.22 |8.71 |21.56 |1474.31 |256 |
|
147 |
+
|[convnext_tiny.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k_384)|85.118|97.608|384 |28.59 |13.14 |39.48 |856.76 |256 |
|
148 |
+
|[convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384)|85.112|97.63 |384 |28.64 |13.14 |39.48 |491.32 |256 |
|
149 |
+
|[convnextv2_base.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in1k)|84.874|97.09 |224 |88.72 |15.38 |28.75 |625.33 |256 |
|
150 |
+
|[convnext_small.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k)|84.562|97.394|224 |50.22 |8.71 |21.56 |1478.29 |256 |
|
151 |
+
|[convnext_large.fb_in1k](https://huggingface.co/timm/convnext_large.fb_in1k)|84.282|96.892|224 |197.77 |34.4 |43.13 |584.28 |256 |
|
152 |
+
|[convnext_tiny.in12k_ft_in1k](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k)|84.186|97.124|224 |28.59 |4.47 |13.44 |2433.7 |256 |
|
153 |
+
|[convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k_384)|84.084|97.14 |384 |28.59 |13.14 |39.48 |862.95 |256 |
|
154 |
+
|[convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k)|83.894|96.964|224 |28.64 |4.47 |13.44 |1452.72 |256 |
|
155 |
+
|[convnext_base.fb_in1k](https://huggingface.co/timm/convnext_base.fb_in1k)|83.82 |96.746|224 |88.59 |15.38 |28.75 |1054.0 |256 |
|
156 |
+
|[convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k_384)|83.37 |96.742|384 |15.62 |7.22 |24.61 |801.72 |256 |
|
157 |
+
|[convnext_small.fb_in1k](https://huggingface.co/timm/convnext_small.fb_in1k)|83.142|96.434|224 |50.22 |8.71 |21.56 |1464.0 |256 |
|
158 |
+
|[convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in1k)|82.92 |96.284|224 |28.64 |4.47 |13.44 |1425.62 |256 |
|
159 |
+
|[convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k)|82.898|96.616|224 |28.59 |4.47 |13.44 |2480.88 |256 |
|
160 |
+
|[convnext_nano.in12k_ft_in1k](https://huggingface.co/timm/convnext_nano.in12k_ft_in1k)|82.282|96.344|224 |15.59 |2.46 |8.37 |3926.52 |256 |
|
161 |
+
|[convnext_tiny_hnf.a2h_in1k](https://huggingface.co/timm/convnext_tiny_hnf.a2h_in1k)|82.216|95.852|224 |28.59 |4.47 |13.44 |2529.75 |256 |
|
162 |
+
|[convnext_tiny.fb_in1k](https://huggingface.co/timm/convnext_tiny.fb_in1k)|82.066|95.854|224 |28.59 |4.47 |13.44 |2346.26 |256 |
|
163 |
+
|[convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k)|82.03 |96.166|224 |15.62 |2.46 |8.37 |2300.18 |256 |
|
164 |
+
|[convnextv2_nano.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in1k)|81.83 |95.738|224 |15.62 |2.46 |8.37 |2321.48 |256 |
|
165 |
+
|[convnext_nano_ols.d1h_in1k](https://huggingface.co/timm/convnext_nano_ols.d1h_in1k)|80.866|95.246|224 |15.65 |2.65 |9.38 |3523.85 |256 |
|
166 |
+
|[convnext_nano.d1h_in1k](https://huggingface.co/timm/convnext_nano.d1h_in1k)|80.768|95.334|224 |15.59 |2.46 |8.37 |3915.58 |256 |
|
167 |
+
|[convnextv2_pico.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_pico.fcmae_ft_in1k)|80.304|95.072|224 |9.07 |1.37 |6.1 |3274.57 |256 |
|
168 |
+
|[convnext_pico.d1_in1k](https://huggingface.co/timm/convnext_pico.d1_in1k)|79.526|94.558|224 |9.05 |1.37 |6.1 |5686.88 |256 |
|
169 |
+
|[convnext_pico_ols.d1_in1k](https://huggingface.co/timm/convnext_pico_ols.d1_in1k)|79.522|94.692|224 |9.06 |1.43 |6.5 |5422.46 |256 |
|
170 |
+
|[convnextv2_femto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_femto.fcmae_ft_in1k)|78.488|93.98 |224 |5.23 |0.79 |4.57 |4264.2 |256 |
|
171 |
+
|[convnext_femto_ols.d1_in1k](https://huggingface.co/timm/convnext_femto_ols.d1_in1k)|77.86 |93.83 |224 |5.23 |0.82 |4.87 |6910.6 |256 |
|
172 |
+
|[convnext_femto.d1_in1k](https://huggingface.co/timm/convnext_femto.d1_in1k)|77.454|93.68 |224 |5.22 |0.79 |4.57 |7189.92 |256 |
|
173 |
+
|[convnextv2_atto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_atto.fcmae_ft_in1k)|76.664|93.044|224 |3.71 |0.55 |3.81 |4728.91 |256 |
|
174 |
+
|[convnext_atto_ols.a2_in1k](https://huggingface.co/timm/convnext_atto_ols.a2_in1k)|75.88 |92.846|224 |3.7 |0.58 |4.11 |7963.16 |256 |
|
175 |
+
|[convnext_atto.d2_in1k](https://huggingface.co/timm/convnext_atto.d2_in1k)|75.664|92.9 |224 |3.7 |0.55 |3.81 |8439.22 |256 |
|
176 |
+
|
177 |
+
### By Throughput (samples / sec)
|
178 |
+
All timing numbers from eager model PyTorch 1.13 on RTX 3090 w/ AMP.
|
179 |
+
|
180 |
+
|model |top1 |top5 |img_size|param_count|gmacs |macts |samples_per_sec|batch_size|
|
181 |
+
|----------------------------------------------|------|------|--------|-----------|------|------|---------------|----------|
|
182 |
+
|[convnext_atto.d2_in1k](https://huggingface.co/timm/convnext_atto.d2_in1k)|75.664|92.9 |224 |3.7 |0.55 |3.81 |8439.22 |256 |
|
183 |
+
|[convnext_atto_ols.a2_in1k](https://huggingface.co/timm/convnext_atto_ols.a2_in1k)|75.88 |92.846|224 |3.7 |0.58 |4.11 |7963.16 |256 |
|
184 |
+
|[convnext_femto.d1_in1k](https://huggingface.co/timm/convnext_femto.d1_in1k)|77.454|93.68 |224 |5.22 |0.79 |4.57 |7189.92 |256 |
|
185 |
+
|[convnext_femto_ols.d1_in1k](https://huggingface.co/timm/convnext_femto_ols.d1_in1k)|77.86 |93.83 |224 |5.23 |0.82 |4.87 |6910.6 |256 |
|
186 |
+
|[convnext_pico.d1_in1k](https://huggingface.co/timm/convnext_pico.d1_in1k)|79.526|94.558|224 |9.05 |1.37 |6.1 |5686.88 |256 |
|
187 |
+
|[convnext_pico_ols.d1_in1k](https://huggingface.co/timm/convnext_pico_ols.d1_in1k)|79.522|94.692|224 |9.06 |1.43 |6.5 |5422.46 |256 |
|
188 |
+
|[convnextv2_atto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_atto.fcmae_ft_in1k)|76.664|93.044|224 |3.71 |0.55 |3.81 |4728.91 |256 |
|
189 |
+
|[convnextv2_femto.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_femto.fcmae_ft_in1k)|78.488|93.98 |224 |5.23 |0.79 |4.57 |4264.2 |256 |
|
190 |
+
|[convnext_nano.in12k_ft_in1k](https://huggingface.co/timm/convnext_nano.in12k_ft_in1k)|82.282|96.344|224 |15.59 |2.46 |8.37 |3926.52 |256 |
|
191 |
+
|[convnext_nano.d1h_in1k](https://huggingface.co/timm/convnext_nano.d1h_in1k)|80.768|95.334|224 |15.59 |2.46 |8.37 |3915.58 |256 |
|
192 |
+
|[convnext_nano_ols.d1h_in1k](https://huggingface.co/timm/convnext_nano_ols.d1h_in1k)|80.866|95.246|224 |15.65 |2.65 |9.38 |3523.85 |256 |
|
193 |
+
|[convnextv2_pico.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_pico.fcmae_ft_in1k)|80.304|95.072|224 |9.07 |1.37 |6.1 |3274.57 |256 |
|
194 |
+
|[convnext_tiny_hnf.a2h_in1k](https://huggingface.co/timm/convnext_tiny_hnf.a2h_in1k)|82.216|95.852|224 |28.59 |4.47 |13.44 |2529.75 |256 |
|
195 |
+
|[convnext_tiny.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k)|82.898|96.616|224 |28.59 |4.47 |13.44 |2480.88 |256 |
|
196 |
+
|[convnext_tiny.in12k_ft_in1k](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k)|84.186|97.124|224 |28.59 |4.47 |13.44 |2433.7 |256 |
|
197 |
+
|[convnext_tiny.fb_in1k](https://huggingface.co/timm/convnext_tiny.fb_in1k)|82.066|95.854|224 |28.59 |4.47 |13.44 |2346.26 |256 |
|
198 |
+
|[convnextv2_nano.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in1k)|81.83 |95.738|224 |15.62 |2.46 |8.37 |2321.48 |256 |
|
199 |
+
|[convnextv2_nano.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k)|82.03 |96.166|224 |15.62 |2.46 |8.37 |2300.18 |256 |
|
200 |
+
|[convnext_small.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k)|84.562|97.394|224 |50.22 |8.71 |21.56 |1478.29 |256 |
|
201 |
+
|[convnext_small.in12k_ft_in1k](https://huggingface.co/timm/convnext_small.in12k_ft_in1k)|85.174|97.506|224 |50.22 |8.71 |21.56 |1474.31 |256 |
|
202 |
+
|[convnext_small.fb_in1k](https://huggingface.co/timm/convnext_small.fb_in1k)|83.142|96.434|224 |50.22 |8.71 |21.56 |1464.0 |256 |
|
203 |
+
|[convnextv2_tiny.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k)|83.894|96.964|224 |28.64 |4.47 |13.44 |1452.72 |256 |
|
204 |
+
|[convnextv2_tiny.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in1k)|82.92 |96.284|224 |28.64 |4.47 |13.44 |1425.62 |256 |
|
205 |
+
|[convnext_base.fb_in1k](https://huggingface.co/timm/convnext_base.fb_in1k)|83.82 |96.746|224 |88.59 |15.38 |28.75 |1054.0 |256 |
|
206 |
+
|[convnext_base.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k)|85.822|97.866|224 |88.59 |15.38 |28.75 |1037.66 |256 |
|
207 |
+
|[convnext_tiny.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.fb_in22k_ft_in1k_384)|84.084|97.14 |384 |28.59 |13.14 |39.48 |862.95 |256 |
|
208 |
+
|[convnext_tiny.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_tiny.in12k_ft_in1k_384)|85.118|97.608|384 |28.59 |13.14 |39.48 |856.76 |256 |
|
209 |
+
|[convnext_base.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_base.clip_laion2b_augreg_ft_in1k)|86.154|97.68 |256 |88.59 |20.09 |37.55 |819.86 |256 |
|
210 |
+
|[convnextv2_nano.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_nano.fcmae_ft_in22k_in1k_384)|83.37 |96.742|384 |15.62 |7.22 |24.61 |801.72 |256 |
|
211 |
+
|[convnextv2_base.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in1k)|84.874|97.09 |224 |88.72 |15.38 |28.75 |625.33 |256 |
|
212 |
+
|[convnextv2_base.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k)|86.74 |98.022|224 |88.72 |15.38 |28.75 |624.23 |256 |
|
213 |
+
|[convnext_large.fb_in1k](https://huggingface.co/timm/convnext_large.fb_in1k)|84.282|96.892|224 |197.77 |34.4 |43.13 |584.28 |256 |
|
214 |
+
|[convnext_large.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k)|86.636|98.028|224 |197.77 |34.4 |43.13 |581.43 |256 |
|
215 |
+
|[convnext_small.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_small.fb_in22k_ft_in1k_384)|85.778|97.886|384 |50.22 |25.58 |63.37 |518.95 |256 |
|
216 |
+
|[convnext_small.in12k_ft_in1k_384](https://huggingface.co/timm/convnext_small.in12k_ft_in1k_384)|86.182|97.92 |384 |50.22 |25.58 |63.37 |516.19 |256 |
|
217 |
+
|[convnextv2_tiny.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_tiny.fcmae_ft_in22k_in1k_384)|85.112|97.63 |384 |28.64 |13.14 |39.48 |491.32 |256 |
|
218 |
+
|[convnext_large_mlp.clip_laion2b_augreg_ft_in1k](https://huggingface.co/timm/convnext_large_mlp.clip_laion2b_augreg_ft_in1k)|87.344|98.218|256 |200.13 |44.94 |56.33 |438.08 |256 |
|
219 |
+
|[convnextv2_large.fcmae_ft_in22k_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k)|87.26 |98.248|224 |197.96 |34.4 |43.13 |376.84 |256 |
|
220 |
+
|[convnextv2_large.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in1k)|85.742|97.584|224 |197.96 |34.4 |43.13 |375.23 |256 |
|
221 |
+
|[convnext_base.clip_laiona_augreg_ft_in1k_384](https://huggingface.co/timm/convnext_base.clip_laiona_augreg_ft_in1k_384)|86.504|97.97 |384 |88.59 |45.21 |84.49 |368.14 |256 |
|
222 |
+
|[convnext_xlarge.fb_in22k_ft_in1k](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k)|87.002|98.208|224 |350.2 |60.98 |57.5 |368.01 |256 |
|
223 |
+
|[convnext_base.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_base.fb_in22k_ft_in1k_384)|86.796|98.264|384 |88.59 |45.21 |84.49 |366.54 |256 |
|
224 |
+
|[convnextv2_base.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_base.fcmae_ft_in22k_in1k_384)|87.646|98.422|384 |88.72 |45.21 |84.49 |209.51 |256 |
|
225 |
+
|[convnext_large.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_large.fb_in22k_ft_in1k_384)|87.476|98.382|384 |197.77 |101.1 |126.74|194.66 |256 |
|
226 |
+
|[convnextv2_huge.fcmae_ft_in1k](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in1k)|86.256|97.75 |224 |660.29 |115.0 |79.07 |154.72 |256 |
|
227 |
+
|[convnextv2_large.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_large.fcmae_ft_in22k_in1k_384)|88.196|98.532|384 |197.96 |101.1 |126.74|128.94 |128 |
|
228 |
+
|[convnext_xlarge.fb_in22k_ft_in1k_384](https://huggingface.co/timm/convnext_xlarge.fb_in22k_ft_in1k_384)|87.75 |98.556|384 |350.2 |179.2 |168.99|124.85 |192 |
|
229 |
+
|[convnextv2_huge.fcmae_ft_in22k_in1k_384](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_384)|88.668|98.738|384 |660.29 |337.96|232.35|50.56 |64 |
|
230 |
+
|[convnextv2_huge.fcmae_ft_in22k_in1k_512](https://huggingface.co/timm/convnextv2_huge.fcmae_ft_in22k_in1k_512)|88.848|98.742|512 |660.29 |600.81|413.07|28.58 |48 |
|
231 |
+
|
232 |
+
## Citation
|
233 |
+
```bibtex
|
234 |
+
@software{ilharco_gabriel_2021_5143773,
|
235 |
+
author = {Ilharco, Gabriel and
|
236 |
+
Wortsman, Mitchell and
|
237 |
+
Wightman, Ross and
|
238 |
+
Gordon, Cade and
|
239 |
+
Carlini, Nicholas and
|
240 |
+
Taori, Rohan and
|
241 |
+
Dave, Achal and
|
242 |
+
Shankar, Vaishaal and
|
243 |
+
Namkoong, Hongseok and
|
244 |
+
Miller, John and
|
245 |
+
Hajishirzi, Hannaneh and
|
246 |
+
Farhadi, Ali and
|
247 |
+
Schmidt, Ludwig},
|
248 |
+
title = {OpenCLIP},
|
249 |
+
month = jul,
|
250 |
+
year = 2021,
|
251 |
+
note = {If you use this software, please cite it as below.},
|
252 |
+
publisher = {Zenodo},
|
253 |
+
version = {0.1},
|
254 |
+
doi = {10.5281/zenodo.5143773},
|
255 |
+
url = {https://doi.org/10.5281/zenodo.5143773}
|
256 |
+
}
|
257 |
+
```
|
258 |
+
```bibtex
|
259 |
+
@inproceedings{schuhmann2022laionb,
|
260 |
+
title={{LAION}-5B: An open large-scale dataset for training next generation image-text models},
|
261 |
+
author={Christoph Schuhmann and
|
262 |
+
Romain Beaumont and
|
263 |
+
Richard Vencu and
|
264 |
+
Cade W Gordon and
|
265 |
+
Ross Wightman and
|
266 |
+
Mehdi Cherti and
|
267 |
+
Theo Coombes and
|
268 |
+
Aarush Katta and
|
269 |
+
Clayton Mullis and
|
270 |
+
Mitchell Wortsman and
|
271 |
+
Patrick Schramowski and
|
272 |
+
Srivatsa R Kundurthy and
|
273 |
+
Katherine Crowson and
|
274 |
+
Ludwig Schmidt and
|
275 |
+
Robert Kaczmarczyk and
|
276 |
+
Jenia Jitsev},
|
277 |
+
booktitle={Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
|
278 |
+
year={2022},
|
279 |
+
url={https://openreview.net/forum?id=M3Y74vmsMcY}
|
280 |
+
}
|
281 |
+
```
|
282 |
+
```bibtex
|
283 |
+
@misc{rw2019timm,
|
284 |
+
author = {Ross Wightman},
|
285 |
+
title = {PyTorch Image Models},
|
286 |
+
year = {2019},
|
287 |
+
publisher = {GitHub},
|
288 |
+
journal = {GitHub repository},
|
289 |
+
doi = {10.5281/zenodo.4414861},
|
290 |
+
howpublished = {\url{https://github.com/rwightman/pytorch-image-models}}
|
291 |
+
}
|
292 |
+
```
|
293 |
+
```bibtex
|
294 |
+
@inproceedings{Radford2021LearningTV,
|
295 |
+
title={Learning Transferable Visual Models From Natural Language Supervision},
|
296 |
+
author={Alec Radford and Jong Wook Kim and Chris Hallacy and A. Ramesh and Gabriel Goh and Sandhini Agarwal and Girish Sastry and Amanda Askell and Pamela Mishkin and Jack Clark and Gretchen Krueger and Ilya Sutskever},
|
297 |
+
booktitle={ICML},
|
298 |
+
year={2021}
|
299 |
+
}
|
300 |
+
```
|
301 |
+
```bibtex
|
302 |
+
@article{liu2022convnet,
|
303 |
+
author = {Zhuang Liu and Hanzi Mao and Chao-Yuan Wu and Christoph Feichtenhofer and Trevor Darrell and Saining Xie},
|
304 |
+
title = {A ConvNet for the 2020s},
|
305 |
+
journal = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
306 |
+
year = {2022},
|
307 |
+
}
|
308 |
+
```
|
config.json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architecture": "convnext_base",
|
3 |
+
"num_classes": 1000,
|
4 |
+
"num_features": 1024,
|
5 |
+
"pretrained_cfg": {
|
6 |
+
"tag": "clip_laion2b_augreg_ft_in1k",
|
7 |
+
"custom_load": false,
|
8 |
+
"input_size": [
|
9 |
+
3,
|
10 |
+
256,
|
11 |
+
256
|
12 |
+
],
|
13 |
+
"fixed_input_size": false,
|
14 |
+
"interpolation": "bicubic",
|
15 |
+
"crop_pct": 1.0,
|
16 |
+
"crop_mode": "center",
|
17 |
+
"mean": [
|
18 |
+
0.48145466,
|
19 |
+
0.4578275,
|
20 |
+
0.40821073
|
21 |
+
],
|
22 |
+
"std": [
|
23 |
+
0.26862954,
|
24 |
+
0.26130258,
|
25 |
+
0.27577711
|
26 |
+
],
|
27 |
+
"num_classes": 1000,
|
28 |
+
"pool_size": [
|
29 |
+
8,
|
30 |
+
8
|
31 |
+
],
|
32 |
+
"first_conv": "stem.0",
|
33 |
+
"classifier": "head.fc"
|
34 |
+
}
|
35 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:704857e9af8c0fab865670efbb204e4cee0b08e203d341c81352de3d8c79c8a6
|
3 |
+
size 354491693
|