timm
/

Image Classification
timm
PyTorch
Safetensors
rwightman HF staff commited on
Commit
6879ea0
1 Parent(s): 3c36327
Files changed (4) hide show
  1. README.md +125 -0
  2. config.json +36 -0
  3. model.safetensors +3 -0
  4. pytorch_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - image-classification
4
+ - timm
5
+ library_name: timm
6
+ license: other
7
+ datasets:
8
+ - imagenet-1k
9
+ ---
10
+ # Model card for fastvit_ma36.apple_dist_in1k
11
+
12
+ A FastViT image classification model. Trained on ImageNet-1k with distillation by paper authors.
13
+
14
+ Please observe [original license](https://github.com/apple/ml-fastvit/blob/8af5928238cab99c45f64fc3e4e7b1516b8224ba/LICENSE).
15
+
16
+ ## Model Details
17
+ - **Model Type:** Image classification / feature backbone
18
+ - **Model Stats:**
19
+ - Params (M): 44.1
20
+ - GMACs: 7.8
21
+ - Activations (M): 40.4
22
+ - Image size: 256 x 256
23
+ - **Papers:**
24
+ - FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization: https://arxiv.org/abs/2303.14189
25
+ - **Original:** https://github.com/apple/ml-fastvit
26
+ - **Dataset:** ImageNet-1k
27
+
28
+ ## Model Usage
29
+ ### Image Classification
30
+ ```python
31
+ from urllib.request import urlopen
32
+ from PIL import Image
33
+ import timm
34
+
35
+ img = Image.open(urlopen(
36
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
37
+ ))
38
+
39
+ model = timm.create_model('fastvit_ma36.apple_dist_in1k', pretrained=True)
40
+ model = model.eval()
41
+
42
+ # get model specific transforms (normalization, resize)
43
+ data_config = timm.data.resolve_model_data_config(model)
44
+ transforms = timm.data.create_transform(**data_config, is_training=False)
45
+
46
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
47
+
48
+ top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)
49
+ ```
50
+
51
+ ### Feature Map Extraction
52
+ ```python
53
+ from urllib.request import urlopen
54
+ from PIL import Image
55
+ import timm
56
+
57
+ img = Image.open(urlopen(
58
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
59
+ ))
60
+
61
+ model = timm.create_model(
62
+ 'fastvit_ma36.apple_dist_in1k',
63
+ pretrained=True,
64
+ features_only=True,
65
+ )
66
+ model = model.eval()
67
+
68
+ # get model specific transforms (normalization, resize)
69
+ data_config = timm.data.resolve_model_data_config(model)
70
+ transforms = timm.data.create_transform(**data_config, is_training=False)
71
+
72
+ output = model(transforms(img).unsqueeze(0)) # unsqueeze single image into batch of 1
73
+
74
+ for o in output:
75
+ # print shape of each feature map in output
76
+ # e.g.:
77
+ # torch.Size([1, 76, 64, 64])
78
+ # torch.Size([1, 152, 32, 32])
79
+ # torch.Size([1, 304, 16, 16])
80
+ # torch.Size([1, 608, 8, 8])
81
+
82
+ print(o.shape)
83
+ ```
84
+
85
+ ### Image Embeddings
86
+ ```python
87
+ from urllib.request import urlopen
88
+ from PIL import Image
89
+ import timm
90
+
91
+ img = Image.open(urlopen(
92
+ 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
93
+ ))
94
+
95
+ model = timm.create_model(
96
+ 'fastvit_ma36.apple_dist_in1k',
97
+ pretrained=True,
98
+ num_classes=0, # remove classifier nn.Linear
99
+ )
100
+ model = model.eval()
101
+
102
+ # get model specific transforms (normalization, resize)
103
+ data_config = timm.data.resolve_model_data_config(model)
104
+ transforms = timm.data.create_transform(**data_config, is_training=False)
105
+
106
+ output = model(transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
107
+
108
+ # or equivalently (without needing to set num_classes=0)
109
+
110
+ output = model.forward_features(transforms(img).unsqueeze(0))
111
+ # output is unpooled, a (1, 608, 8, 8) shaped tensor
112
+
113
+ output = model.forward_head(output, pre_logits=True)
114
+ # output is a (1, num_features) shaped tensor
115
+ ```
116
+
117
+ ## Citation
118
+ ```bibtex
119
+ @inproceedings{vasufastvit2023,
120
+ author = {Pavan Kumar Anasosalu Vasu and James Gabriel and Jeff Zhu and Oncel Tuzel and Anurag Ranjan},
121
+ title = {FastViT: A Fast Hybrid Vision Transformer using Structural Reparameterization},
122
+ booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
123
+ year = {2023}
124
+ }
125
+ ```
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architecture": "fastvit_ma36",
3
+ "num_classes": 1000,
4
+ "num_features": 1216,
5
+ "global_pool": "avg",
6
+ "pretrained_cfg": {
7
+ "tag": "apple_dist_in1k",
8
+ "custom_load": false,
9
+ "input_size": [
10
+ 3,
11
+ 256,
12
+ 256
13
+ ],
14
+ "fixed_input_size": false,
15
+ "interpolation": "bicubic",
16
+ "crop_pct": 0.95,
17
+ "crop_mode": "center",
18
+ "mean": [
19
+ 0.485,
20
+ 0.456,
21
+ 0.406
22
+ ],
23
+ "std": [
24
+ 0.229,
25
+ 0.224,
26
+ 0.225
27
+ ],
28
+ "num_classes": 1000,
29
+ "pool_size": [
30
+ 8,
31
+ 8
32
+ ],
33
+ "first_conv": null,
34
+ "classifier": "head.fc"
35
+ }
36
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93ebf499f5bbf003eae7d048a44d32f80871d954c2eec4ac1ae31b5c3d8f88f2
3
+ size 176808584
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2605b67c5c572fe4805ddb2f8d88f55bbc98d7c23143ee0947351fa8b165e696
3
+ size 177139285