File size: 2,610 Bytes
3ff7cd4 ab0d969 3ff7cd4 ab0d969 3ff7cd4 6e1aa35 3ff7cd4 ab0d969 3ff7cd4 ab0d969 3ff7cd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.87
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0924
- Accuracy: 0.87
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.7495 | 1.0 | 450 | 1.7168 | 0.52 |
| 1.1633 | 2.0 | 900 | 1.0515 | 0.66 |
| 0.3792 | 3.0 | 1350 | 0.7312 | 0.73 |
| 0.5365 | 4.0 | 1800 | 0.9707 | 0.75 |
| 0.0234 | 5.0 | 2250 | 1.1124 | 0.75 |
| 0.0039 | 6.0 | 2700 | 0.9717 | 0.82 |
| 0.1781 | 7.0 | 3150 | 1.0491 | 0.82 |
| 0.0009 | 8.0 | 3600 | 1.1946 | 0.83 |
| 0.0007 | 9.0 | 4050 | 1.1116 | 0.84 |
| 0.0004 | 10.0 | 4500 | 1.0814 | 0.85 |
| 0.0004 | 11.0 | 4950 | 1.1160 | 0.85 |
| 0.0003 | 12.0 | 5400 | 1.1082 | 0.85 |
| 0.0003 | 13.0 | 5850 | 1.1311 | 0.86 |
| 0.0002 | 14.0 | 6300 | 1.1159 | 0.86 |
| 0.0003 | 15.0 | 6750 | 1.0924 | 0.87 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|