tj-solergibert commited on
Commit
8f0dae4
1 Parent(s): f244090

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - xtreme
7
+ metrics:
8
+ - f1
9
+ model-index:
10
+ - name: xlm-roberta-base-finetuned-panx-fr
11
+ results:
12
+ - task:
13
+ name: Token Classification
14
+ type: token-classification
15
+ dataset:
16
+ name: xtreme
17
+ type: xtreme
18
+ config: PAN-X.fr
19
+ split: train
20
+ args: PAN-X.fr
21
+ metrics:
22
+ - name: F1
23
+ type: f1
24
+ value: 0.8346456692913387
25
+ ---
26
+
27
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
28
+ should probably proofread and complete it, then remove this comment. -->
29
+
30
+ # xlm-roberta-base-finetuned-panx-fr
31
+
32
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
33
+ It achieves the following results on the evaluation set:
34
+ - Loss: 0.2763
35
+ - F1: 0.8346
36
+
37
+ ## Model description
38
+
39
+ More information needed
40
+
41
+ ## Intended uses & limitations
42
+
43
+ More information needed
44
+
45
+ ## Training and evaluation data
46
+
47
+ More information needed
48
+
49
+ ## Training procedure
50
+
51
+ ### Training hyperparameters
52
+
53
+ The following hyperparameters were used during training:
54
+ - learning_rate: 5e-05
55
+ - train_batch_size: 24
56
+ - eval_batch_size: 24
57
+ - seed: 42
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - num_epochs: 3
61
+
62
+ ### Training results
63
+
64
+ | Training Loss | Epoch | Step | Validation Loss | F1 |
65
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
66
+ | 0.5779 | 1.0 | 191 | 0.3701 | 0.7701 |
67
+ | 0.2735 | 2.0 | 382 | 0.2908 | 0.8254 |
68
+ | 0.1769 | 3.0 | 573 | 0.2763 | 0.8346 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.21.0
74
+ - Pytorch 1.12.0+cu113
75
+ - Datasets 2.4.0
76
+ - Tokenizers 0.12.1