--- license: mit library_name: peft tags: - generated_from_trainer base_model: xlm-roberta-base metrics: - accuracy - f1 model-index: - name: prompt_fine_tuned_boolq__XLMroberta results: [] --- # prompt_fine_tuned_boolq__XLMroberta This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5694 - Accuracy: 0.7778 - F1: 0.6806 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 400 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:| | 0.6671 | 4.1667 | 50 | 0.5942 | 0.7778 | 0.6806 | | 0.6529 | 8.3333 | 100 | 0.5786 | 0.7778 | 0.6806 | | 0.6499 | 12.5 | 150 | 0.5779 | 0.7778 | 0.6806 | | 0.6527 | 16.6667 | 200 | 0.5782 | 0.7778 | 0.6806 | | 0.6471 | 20.8333 | 250 | 0.5716 | 0.7778 | 0.6806 | | 0.6533 | 25.0 | 300 | 0.5710 | 0.7778 | 0.6806 | | 0.6599 | 29.1667 | 350 | 0.5691 | 0.7778 | 0.6806 | | 0.6552 | 33.3333 | 400 | 0.5694 | 0.7778 | 0.6806 | ### Framework versions - PEFT 0.11.1 - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1