File size: 1,759 Bytes
814d8a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
base_model: csebuetnlp/mT5_multilingual_XLSum
tags:
- generated_from_trainer
model-index:
- name: FearNews_1_loadbest
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# FearNews_1_loadbest

This model is a fine-tuned version of [csebuetnlp/mT5_multilingual_XLSum](https://huggingface.co/csebuetnlp/mT5_multilingual_XLSum) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 4.2853

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.5702        | 1.08  | 200  | 3.4542          |
| 1.5764        | 2.15  | 400  | 3.5080          |
| 1.8336        | 3.23  | 600  | 3.5567          |
| 1.146         | 4.3   | 800  | 3.6572          |
| 1.4305        | 5.38  | 1000 | 3.8077          |
| 0.9643        | 6.45  | 1200 | 3.9775          |
| 0.9929        | 7.53  | 1400 | 4.1400          |
| 0.8563        | 8.6   | 1600 | 4.2600          |
| 0.7378        | 9.68  | 1800 | 4.2853          |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1