--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - librispeech_asr metrics: - wer model-index: - name: SpeechGPT results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: librispeech_asr type: librispeech_asr config: clean split: None args: 'config: clean, split: train' metrics: - name: Wer type: wer value: 2.8092665855143033 --- # SpeechGPT This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the librispeech_asr dataset. It achieves the following results on the evaluation set: - Loss: 0.0813 - Wer: 2.8093 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0956 | 0.12 | 1000 | 0.1065 | 3.6519 | | 0.1002 | 0.24 | 2000 | 0.0997 | 3.5453 | | 0.0841 | 0.36 | 3000 | 0.0941 | 3.3057 | | 0.0839 | 0.48 | 4000 | 0.0905 | 3.1783 | | 0.0821 | 0.6 | 5000 | 0.0855 | 2.9595 | | 0.0626 | 0.72 | 6000 | 0.0839 | 2.9310 | | 0.0643 | 0.84 | 7000 | 0.0821 | 2.8112 | | 0.0908 | 0.97 | 8000 | 0.0813 | 2.8093 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cu121 - Datasets 2.19.0 - Tokenizers 0.15.2