End of training
Browse files- README.md +82 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: Fsoft-AIC/videberta-base
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: videberta-base_1024
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# videberta-base_1024
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [Fsoft-AIC/videberta-base](https://huggingface.co/Fsoft-AIC/videberta-base) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.5634
|
20 |
+
- Accuracy: 0.75
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 0.0003
|
40 |
+
- train_batch_size: 2
|
41 |
+
- eval_batch_size: 2
|
42 |
+
- seed: 42
|
43 |
+
- gradient_accumulation_steps: 8
|
44 |
+
- total_train_batch_size: 16
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_ratio: 0.18
|
48 |
+
- training_steps: 1000
|
49 |
+
- mixed_precision_training: Native AMP
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
+
| 0.6979 | 0.1 | 50 | 0.6724 | 0.75 |
|
56 |
+
| 0.6979 | 0.21 | 100 | 0.6272 | 0.75 |
|
57 |
+
| 0.6979 | 0.31 | 150 | 0.5727 | 0.75 |
|
58 |
+
| 0.6979 | 0.41 | 200 | 0.5659 | 0.75 |
|
59 |
+
| 0.6979 | 0.52 | 250 | 0.5675 | 0.75 |
|
60 |
+
| 0.6979 | 0.62 | 300 | 0.5633 | 0.75 |
|
61 |
+
| 0.6979 | 0.72 | 350 | 0.5931 | 0.75 |
|
62 |
+
| 0.6979 | 0.83 | 400 | 0.5644 | 0.75 |
|
63 |
+
| 0.6979 | 0.93 | 450 | 0.5633 | 0.75 |
|
64 |
+
| 0.6979 | 1.03 | 500 | 0.5926 | 0.75 |
|
65 |
+
| 0.6979 | 1.14 | 550 | 0.5649 | 0.75 |
|
66 |
+
| 0.6979 | 1.24 | 600 | 0.5628 | 0.75 |
|
67 |
+
| 0.6979 | 1.34 | 650 | 0.5631 | 0.75 |
|
68 |
+
| 0.6979 | 1.45 | 700 | 0.5688 | 0.75 |
|
69 |
+
| 0.6979 | 1.55 | 750 | 0.5624 | 0.75 |
|
70 |
+
| 0.6979 | 1.65 | 800 | 0.5630 | 0.75 |
|
71 |
+
| 0.6979 | 1.76 | 850 | 0.5628 | 0.75 |
|
72 |
+
| 0.6979 | 1.86 | 900 | 0.5624 | 0.75 |
|
73 |
+
| 0.6979 | 1.96 | 950 | 0.5637 | 0.75 |
|
74 |
+
| 0.5706 | 2.07 | 1000 | 0.5634 | 0.75 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.35.0.dev0
|
80 |
+
- Pytorch 2.0.0
|
81 |
+
- Datasets 2.1.0
|
82 |
+
- Tokenizers 0.14.1
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 737457141
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:baa9ee16cd3de8ccdda427441b280c6d692e941eb8eaea43015b03066b176397
|
3 |
size 737457141
|