model update
Browse files- README.md +176 -0
- eval/metric.json +0 -1
- eval/metric.test_2020.json +1 -0
- eval/metric.test_2021.json +1 -0
- eval/metric_span.test_2020.json +1 -0
- eval/metric_span.test_2021.json +1 -0
- eval/prediction.2020.test.json +0 -0
- eval/prediction.2021.test.json +0 -0
- eval/prediction.random.dev.json +0 -0
- trainer_config.json +1 -1
README.md
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- tner/tweetner7
|
4 |
+
metrics:
|
5 |
+
- f1
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
model-index:
|
9 |
+
- name: tner/twitter-roberta-base-dec2020-tweetner7-random
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
name: Token Classification
|
13 |
+
type: token-classification
|
14 |
+
dataset:
|
15 |
+
name: tner/tweetner7/test_2021
|
16 |
+
type: tner/tweetner7/test_2021
|
17 |
+
args: tner/tweetner7/test_2021
|
18 |
+
metrics:
|
19 |
+
- name: F1
|
20 |
+
type: f1
|
21 |
+
value: 0.647180429539451
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 0.6428245493953912
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.651595744680851
|
28 |
+
- name: F1 (macro)
|
29 |
+
type: f1_macro
|
30 |
+
value: 0.599724784991918
|
31 |
+
- name: Precision (macro)
|
32 |
+
type: precision_macro
|
33 |
+
value: 0.5927116702269455
|
34 |
+
- name: Recall (macro)
|
35 |
+
type: recall_macro
|
36 |
+
value: 0.6075992592680901
|
37 |
+
- name: F1 (entity span)
|
38 |
+
type: f1_entity_span
|
39 |
+
value: 0.7828633779360248
|
40 |
+
- name: Precision (entity span)
|
41 |
+
type: precision_entity_span
|
42 |
+
value: 0.7775496235455168
|
43 |
+
- name: Recall (entity span)
|
44 |
+
type: recall_entity_span
|
45 |
+
value: 0.7882502602058518
|
46 |
+
- task:
|
47 |
+
name: Token Classification
|
48 |
+
type: token-classification
|
49 |
+
dataset:
|
50 |
+
name: tner/tweetner7/test_2020
|
51 |
+
type: tner/tweetner7/test_2020
|
52 |
+
args: tner/tweetner7/test_2020
|
53 |
+
metrics:
|
54 |
+
- name: F1
|
55 |
+
type: f1
|
56 |
+
value: 0.6469310157523085
|
57 |
+
- name: Precision
|
58 |
+
type: precision
|
59 |
+
value: 0.6786324786324787
|
60 |
+
- name: Recall
|
61 |
+
type: recall
|
62 |
+
value: 0.6180591593149974
|
63 |
+
- name: F1 (macro)
|
64 |
+
type: f1_macro
|
65 |
+
value: 0.6053228739595288
|
66 |
+
- name: Precision (macro)
|
67 |
+
type: precision_macro
|
68 |
+
value: 0.6353958642029116
|
69 |
+
- name: Recall (macro)
|
70 |
+
type: recall_macro
|
71 |
+
value: 0.5799081543030431
|
72 |
+
- name: F1 (entity span)
|
73 |
+
type: f1_entity_span
|
74 |
+
value: 0.7593699076588811
|
75 |
+
- name: Precision (entity span)
|
76 |
+
type: precision_entity_span
|
77 |
+
value: 0.7965811965811965
|
78 |
+
- name: Recall (entity span)
|
79 |
+
type: recall_entity_span
|
80 |
+
value: 0.7254800207576544
|
81 |
+
|
82 |
+
pipeline_tag: token-classification
|
83 |
+
widget:
|
84 |
+
- text: "Get the all-analog Classic Vinyl Edition of `Takin' Off` Album from {{@Herbie Hancock@}} via {{USERNAME}} link below: {{URL}}"
|
85 |
+
example_title: "NER Example 1"
|
86 |
+
---
|
87 |
+
# tner/twitter-roberta-base-dec2020-tweetner7-random
|
88 |
+
|
89 |
+
This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-dec2020](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2020) on the
|
90 |
+
[tner/tweetner7](https://huggingface.co/datasets/tner/tweetner7) dataset (`train_random` split).
|
91 |
+
Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
|
92 |
+
for more detail). It achieves the following results on the test set of 2021:
|
93 |
+
- F1 (micro): 0.647180429539451
|
94 |
+
- Precision (micro): 0.6428245493953912
|
95 |
+
- Recall (micro): 0.651595744680851
|
96 |
+
- F1 (macro): 0.599724784991918
|
97 |
+
- Precision (macro): 0.5927116702269455
|
98 |
+
- Recall (macro): 0.6075992592680901
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
+
The per-entity breakdown of the F1 score on the test set are below:
|
103 |
+
- corporation: 0.49081803005008345
|
104 |
+
- creative_work: 0.4642392717815344
|
105 |
+
- event: 0.4564920273348519
|
106 |
+
- group: 0.6168039538714991
|
107 |
+
- location: 0.6750496360026472
|
108 |
+
- person: 0.8331479421579534
|
109 |
+
- product: 0.661522633744856
|
110 |
+
|
111 |
+
For F1 scores, the confidence interval is obtained by bootstrap as below:
|
112 |
+
- F1 (micro):
|
113 |
+
- 90%: [0.638863290259823, 0.6571232166113093]
|
114 |
+
- 95%: [0.6369059711235887, 0.6583232503306811]
|
115 |
+
- F1 (macro):
|
116 |
+
- 90%: [0.638863290259823, 0.6571232166113093]
|
117 |
+
- 95%: [0.6369059711235887, 0.6583232503306811]
|
118 |
+
|
119 |
+
Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner7-random/raw/main/eval/metric.json)
|
120 |
+
and [metric file of entity span](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner7-random/raw/main/eval/metric_span.json).
|
121 |
+
|
122 |
+
### Usage
|
123 |
+
This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
|
124 |
+
```shell
|
125 |
+
pip install tner
|
126 |
+
```
|
127 |
+
and activate model as below.
|
128 |
+
```python
|
129 |
+
from tner import TransformersNER
|
130 |
+
model = TransformersNER("tner/twitter-roberta-base-dec2020-tweetner7-random")
|
131 |
+
model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
|
132 |
+
```
|
133 |
+
It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
|
134 |
+
|
135 |
+
### Training hyperparameters
|
136 |
+
|
137 |
+
The following hyperparameters were used during training:
|
138 |
+
- dataset: ['tner/tweetner7']
|
139 |
+
- dataset_split: train_random
|
140 |
+
- dataset_name: None
|
141 |
+
- local_dataset: None
|
142 |
+
- model: cardiffnlp/twitter-roberta-base-dec2020
|
143 |
+
- crf: True
|
144 |
+
- max_length: 128
|
145 |
+
- epoch: 30
|
146 |
+
- batch_size: 32
|
147 |
+
- lr: 1e-05
|
148 |
+
- random_seed: 0
|
149 |
+
- gradient_accumulation_steps: 1
|
150 |
+
- weight_decay: 1e-07
|
151 |
+
- lr_warmup_step_ratio: 0.15
|
152 |
+
- max_grad_norm: 1
|
153 |
+
|
154 |
+
The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner7-random/raw/main/trainer_config.json).
|
155 |
+
|
156 |
+
### Reference
|
157 |
+
If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
|
158 |
+
|
159 |
+
```
|
160 |
+
|
161 |
+
@inproceedings{ushio-camacho-collados-2021-ner,
|
162 |
+
title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
|
163 |
+
author = "Ushio, Asahi and
|
164 |
+
Camacho-Collados, Jose",
|
165 |
+
booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
|
166 |
+
month = apr,
|
167 |
+
year = "2021",
|
168 |
+
address = "Online",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://aclanthology.org/2021.eacl-demos.7",
|
171 |
+
doi = "10.18653/v1/2021.eacl-demos.7",
|
172 |
+
pages = "53--62",
|
173 |
+
abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
|
174 |
+
}
|
175 |
+
|
176 |
+
```
|
eval/metric.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"random.dev": {"micro/f1": 0.636139292569235, "micro/f1_ci": {}, "micro/recall": 0.6193272824345969, "micro/precision": 0.6538895152198422, "macro/f1": 0.5889505868453838, "macro/f1_ci": {}, "macro/recall": 0.5747770006058855, "macro/precision": 0.6048487753165137, "per_entity_metric": {"corporation": {"f1": 0.5054945054945055, "f1_ci": {}, "precision": 0.5380116959064327, "recall": 0.47668393782383417}, "creative_work": {"f1": 0.4921135646687697, "f1_ci": {}, "precision": 0.5032258064516129, "recall": 0.48148148148148145}, "event": {"f1": 0.3678646934460888, "f1_ci": {}, "precision": 0.3815789473684211, "recall": 0.3551020408163265}, "group": {"f1": 0.6110283159463488, "f1_ci": {}, "precision": 0.6307692307692307, "recall": 0.5924855491329479}, "location": {"f1": 0.6686567164179105, "f1_ci": {}, "precision": 0.6511627906976745, "recall": 0.6871165644171779}, "person": {"f1": 0.8582302568981922, "f1_ci": {}, "precision": 0.8706563706563707, "recall": 0.8461538461538461}, "product": {"f1": 0.6192660550458715, "f1_ci": {}, "precision": 0.6585365853658537, "recall": 0.5844155844155844}}}, "2021.test": {"micro/f1": 0.647180429539451, "micro/f1_ci": {"90": [0.638863290259823, 0.6571232166113093], "95": [0.6369059711235887, 0.6583232503306811]}, "micro/recall": 0.651595744680851, "micro/precision": 0.6428245493953912, "macro/f1": 0.599724784991918, "macro/f1_ci": {"90": [0.5898083141176582, 0.6102417714069138], "95": [0.5883541467624883, 0.6118892806343514]}, "macro/recall": 0.6075992592680901, "macro/precision": 0.5927116702269455, "per_entity_metric": {"corporation": {"f1": 0.49081803005008345, "f1_ci": {"90": [0.4659487770408919, 0.5182997799087251], "95": [0.4607175510034198, 0.5226749309775297]}, "precision": 0.4916387959866221, "recall": 0.49}, "creative_work": {"f1": 0.4642392717815344, "f1_ci": {"90": [0.43437985968912063, 0.49609799842004704], "95": [0.4293175625975742, 0.50293712081692]}, "precision": 0.4423791821561338, "recall": 0.4883720930232558}, "event": {"f1": 0.4564920273348519, "f1_ci": {"90": [0.43312040607394414, 0.4805105894941198], "95": [0.4290331073815886, 0.48513216306524937]}, "precision": 0.45711678832116787, "recall": 0.45586897179253866}, "group": {"f1": 0.6168039538714991, "f1_ci": {"90": [0.596835997433537, 0.6375918997219351], "95": [0.5930045786258692, 0.6423742481136104]}, "precision": 0.6170072511535926, "recall": 0.616600790513834}, "location": {"f1": 0.6750496360026472, "f1_ci": {"90": [0.6483953111117986, 0.7020357363811676], "95": [0.6442174340711808, 0.7062758926474242]}, "precision": 0.6415094339622641, "recall": 0.7122905027932961}, "person": {"f1": 0.8331479421579534, "f1_ci": {"90": [0.8224552661031729, 0.8444571403179274], "95": [0.8204713825881407, 0.8460376396156104]}, "precision": 0.8378076062639821, "recall": 0.8285398230088495}, "product": {"f1": 0.661522633744856, "f1_ci": {"90": [0.6407822659293477, 0.6827506165675322], "95": [0.6355335831565007, 0.6869551952078615]}, "precision": 0.661522633744856, "recall": 0.661522633744856}}}, "2020.test": {"micro/f1": 0.6469310157523085, "micro/f1_ci": {"90": [0.6255332972787668, 0.6659736408494877], "95": [0.6224135756691761, 0.6702426848338685]}, "micro/recall": 0.6180591593149974, "micro/precision": 0.6786324786324787, "macro/f1": 0.6053228739595288, "macro/f1_ci": {"90": [0.5811485400719889, 0.625587676346971], "95": [0.5779351962830672, 0.630439252296093]}, "macro/recall": 0.5799081543030431, "macro/precision": 0.6353958642029116, "per_entity_metric": {"corporation": {"f1": 0.5555555555555557, "f1_ci": {"90": [0.49450244200244203, 0.6116561964591661], "95": [0.4842493589606233, 0.6220230556337368]}, "precision": 0.5614973262032086, "recall": 0.5497382198952879}, "creative_work": {"f1": 0.5384615384615384, "f1_ci": {"90": [0.479163765088208, 0.5944598315516683], "95": [0.4689400972590627, 0.6025773195876288]}, "precision": 0.5723270440251572, "recall": 0.5083798882681564}, "event": {"f1": 0.44274809160305345, "f1_ci": {"90": [0.3905637631216805, 0.4928571428571428], "95": [0.38058704004728827, 0.5038339866584143]}, "precision": 0.44787644787644787, "recall": 0.4377358490566038}, "group": {"f1": 0.5656934306569343, "f1_ci": {"90": [0.5115089837170129, 0.6180623574777951], "95": [0.49914021378118173, 0.626345170668137]}, "precision": 0.6540084388185654, "recall": 0.4983922829581994}, "location": {"f1": 0.6504559270516718, "f1_ci": {"90": [0.5806338822467855, 0.711697116442879], "95": [0.5667472773335965, 0.7247410144283611]}, "precision": 0.6524390243902439, "recall": 0.6484848484848484}, "person": {"f1": 0.8402777777777778, "f1_ci": {"90": [0.8144796380090498, 0.8632005454395977], "95": [0.810303182503082, 0.8675224547771234]}, "precision": 0.8705035971223022, "recall": 0.8120805369127517}, "product": {"f1": 0.6440677966101694, "f1_ci": {"90": [0.587443946188341, 0.6988570255688482], "95": [0.5747000587297592, 0.7104135562854583]}, "precision": 0.689119170984456, "recall": 0.6045454545454545}}}, "2021.test (span detection)": {"micro/f1": 0.7828633779360248, "micro/f1_ci": {}, "micro/recall": 0.7882502602058518, "micro/precision": 0.7775496235455168, "macro/f1": 0.7828633779360248, "macro/f1_ci": {}, "macro/recall": 0.7882502602058518, "macro/precision": 0.7775496235455168}, "2020.test (span detection)": {"micro/f1": 0.7593699076588811, "micro/f1_ci": {}, "micro/recall": 0.7254800207576544, "micro/precision": 0.7965811965811965, "macro/f1": 0.7593699076588811, "macro/f1_ci": {}, "macro/recall": 0.7254800207576544, "macro/precision": 0.7965811965811965}}
|
|
|
|
eval/metric.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.6469310157523085, "micro/f1_ci": {"90": [0.6255332972787668, 0.6659736408494877], "95": [0.6224135756691761, 0.6702426848338685]}, "micro/recall": 0.6180591593149974, "micro/precision": 0.6786324786324787, "macro/f1": 0.6053228739595288, "macro/f1_ci": {"90": [0.5811485400719889, 0.625587676346971], "95": [0.5779351962830672, 0.630439252296093]}, "macro/recall": 0.5799081543030431, "macro/precision": 0.6353958642029116, "per_entity_metric": {"corporation": {"f1": 0.5555555555555557, "f1_ci": {"90": [0.49450244200244203, 0.6116561964591661], "95": [0.4842493589606233, 0.6220230556337368]}, "precision": 0.5614973262032086, "recall": 0.5497382198952879}, "creative_work": {"f1": 0.5384615384615384, "f1_ci": {"90": [0.479163765088208, 0.5944598315516683], "95": [0.4689400972590627, 0.6025773195876288]}, "precision": 0.5723270440251572, "recall": 0.5083798882681564}, "event": {"f1": 0.44274809160305345, "f1_ci": {"90": [0.3905637631216805, 0.4928571428571428], "95": [0.38058704004728827, 0.5038339866584143]}, "precision": 0.44787644787644787, "recall": 0.4377358490566038}, "group": {"f1": 0.5656934306569343, "f1_ci": {"90": [0.5115089837170129, 0.6180623574777951], "95": [0.49914021378118173, 0.626345170668137]}, "precision": 0.6540084388185654, "recall": 0.4983922829581994}, "location": {"f1": 0.6504559270516718, "f1_ci": {"90": [0.5806338822467855, 0.711697116442879], "95": [0.5667472773335965, 0.7247410144283611]}, "precision": 0.6524390243902439, "recall": 0.6484848484848484}, "person": {"f1": 0.8402777777777778, "f1_ci": {"90": [0.8144796380090498, 0.8632005454395977], "95": [0.810303182503082, 0.8675224547771234]}, "precision": 0.8705035971223022, "recall": 0.8120805369127517}, "product": {"f1": 0.6440677966101694, "f1_ci": {"90": [0.587443946188341, 0.6988570255688482], "95": [0.5747000587297592, 0.7104135562854583]}, "precision": 0.689119170984456, "recall": 0.6045454545454545}}}
|
eval/metric.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.647180429539451, "micro/f1_ci": {"90": [0.638863290259823, 0.6571232166113093], "95": [0.6369059711235887, 0.6583232503306811]}, "micro/recall": 0.651595744680851, "micro/precision": 0.6428245493953912, "macro/f1": 0.599724784991918, "macro/f1_ci": {"90": [0.5898083141176582, 0.6102417714069138], "95": [0.5883541467624883, 0.6118892806343514]}, "macro/recall": 0.6075992592680901, "macro/precision": 0.5927116702269455, "per_entity_metric": {"corporation": {"f1": 0.49081803005008345, "f1_ci": {"90": [0.4659487770408919, 0.5182997799087251], "95": [0.4607175510034198, 0.5226749309775297]}, "precision": 0.4916387959866221, "recall": 0.49}, "creative_work": {"f1": 0.4642392717815344, "f1_ci": {"90": [0.43437985968912063, 0.49609799842004704], "95": [0.4293175625975742, 0.50293712081692]}, "precision": 0.4423791821561338, "recall": 0.4883720930232558}, "event": {"f1": 0.4564920273348519, "f1_ci": {"90": [0.43312040607394414, 0.4805105894941198], "95": [0.4290331073815886, 0.48513216306524937]}, "precision": 0.45711678832116787, "recall": 0.45586897179253866}, "group": {"f1": 0.6168039538714991, "f1_ci": {"90": [0.596835997433537, 0.6375918997219351], "95": [0.5930045786258692, 0.6423742481136104]}, "precision": 0.6170072511535926, "recall": 0.616600790513834}, "location": {"f1": 0.6750496360026472, "f1_ci": {"90": [0.6483953111117986, 0.7020357363811676], "95": [0.6442174340711808, 0.7062758926474242]}, "precision": 0.6415094339622641, "recall": 0.7122905027932961}, "person": {"f1": 0.8331479421579534, "f1_ci": {"90": [0.8224552661031729, 0.8444571403179274], "95": [0.8204713825881407, 0.8460376396156104]}, "precision": 0.8378076062639821, "recall": 0.8285398230088495}, "product": {"f1": 0.661522633744856, "f1_ci": {"90": [0.6407822659293477, 0.6827506165675322], "95": [0.6355335831565007, 0.6869551952078615]}, "precision": 0.661522633744856, "recall": 0.661522633744856}}}
|
eval/metric_span.test_2020.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7593699076588811, "micro/f1_ci": {}, "micro/recall": 0.7254800207576544, "micro/precision": 0.7965811965811965, "macro/f1": 0.7593699076588811, "macro/f1_ci": {}, "macro/recall": 0.7254800207576544, "macro/precision": 0.7965811965811965}
|
eval/metric_span.test_2021.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"micro/f1": 0.7828633779360248, "micro/f1_ci": {}, "micro/recall": 0.7882502602058518, "micro/precision": 0.7775496235455168, "macro/f1": 0.7828633779360248, "macro/f1_ci": {}, "macro/recall": 0.7882502602058518, "macro/precision": 0.7775496235455168}
|
eval/prediction.2020.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.2021.test.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
eval/prediction.random.dev.json
DELETED
The diff for this file is too large to render.
See raw diff
|
|
trainer_config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"
|
|
|
1 |
+
{"dataset": ["tner/tweetner7"], "dataset_split": "train_random", "dataset_name": null, "local_dataset": null, "model": "cardiffnlp/twitter-roberta-base-dec2020", "crf": true, "max_length": 128, "epoch": 30, "batch_size": 32, "lr": 1e-05, "random_seed": 0, "gradient_accumulation_steps": 1, "weight_decay": 1e-07, "lr_warmup_step_ratio": 0.15, "max_grad_norm": 1}
|