File size: 12,712 Bytes
e364298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98fd865
e364298
 
 
 
98fd865
 
 
 
e364298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98fd865
 
e364298
 
 
 
 
 
 
 
 
 
 
 
 
 
98fd865
 
e364298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b9f8c1
e364298
68b43b8
 
3d9fbc2
 
68b43b8
 
 
6b9f8c1
 
 
 
 
e364298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
---
language:
  - en
  - ja
library_name: transformers
pipeline_tag: text-generation
license: llama3.1
model_type: llama
---

# Llama 3.1 Swallow - Built with Llama

Llama 3.1 Swallow is a series of large language models (8B, 70B) that were built by continual pre-training on the [Meta Llama 3.1](https://huggingface.co/collections/meta-llama/llama-31-669fc079a0c406a149a5738f) models.
Llama 3.1 Swallow enhanced the Japanese language capabilities of the original Llama 3.1 while retaining the English language capabilities.
We use approximately 200 billion tokens that were sampled from a large Japanese web corpus (Swallow Corpus Version 2), Japanese and English Wikipedia articles, and mathematical and
coding contents, etc for continual pre-training.
The instruction-tuned models (Instruct) were built by supervised fine-tuning (SFT) on the synthetic data specially built for Japanese (see the Training Datasets section for details).
See the Swallow Model Index section to find other model variants.

# Release History

- **November 11, 2024**: Released [Llama-3.1-Swallow-8B-v0.2](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.2) and [Llama-3.1-Swallow-8B-Instruct-v0.2](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2).
- **October 08, 2024**: Released [Llama-3.1-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1), [Llama-3.1-Swallow-8B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1), [Llama-3.1-Swallow-70B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1), and [Llama-3.1-Swallow-70B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1).

## Swallow Model Index

|Model|Llama-3.1-Swallow v0.1|Llama-3.1-Swallow-Instruct v0.1|Llama-3.1-Swallow v0.2|Llama-3.1-Swallow-Instruct v0.2|
|---|---|---|---|---|
|8B| [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-v0.2) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2) | 
|70B| [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-70B-Instruct-v0.1) |  |  |

![logo](./logo.png)

The website [https://swallow-llm.github.io/](https://swallow-llm.github.io/) provides large language models developed by the Swallow team.

## Model Details

* **Model type**: Please refer to [Llama 3.1 MODEL_CARD](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for details on the model architecture.
* **Language(s)**: Japanese English
* **Library**: [Megatron-LM](https://github.com/NVIDIA/Megatron-LM) 
* **Tokenizer**: Please refer to [Llama 3.1 blog](https://ai.meta.com/blog/meta-llama-3-1) for details on the tokenizer.
* **Contact**: swallow[at]nlp.c.titech.ac.jp 

## Model Performance

### Japanese tasks

|Model|JCom.|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|JMMLU|JHumanEval|Ja Avg|
|---|---|---|---|---|---|---|---|---|---|---|---|
|   |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|5-shot|0-shot|   |
|   |EM acc|Char-F1|Char-F1|Char-F1|ROUGE-2|EM acc|BLEU|BLEU|EM acc|pass@1|   |
| Qwen2-7B | 0.8776 | 0.4627 | 0.3766 | 0.8984 | 0.1716 | 0.5480 | 0.2080 | 0.1949 | 0.5871 | **0.4183** | 0.4743 |
| Qwen2.5-7B | **0.9240** | 0.4581 | 0.4259 | **0.9071** | **0.2162** | **0.6200** | 0.2295 | 0.1989 | **0.6337** | 0.2665 | 0.4880 |
| Sarashina2-7B | 0.7417 | 0.5089 | **0.6353** | 0.8683 | 0.1420 | 0.0800 | 0.2727 | 0.2015 | 0.3835 | 0.0000 | 0.3834 |
| Llama 3 8B | 0.8356 | 0.4454 | 0.4002 | 0.8881 | 0.1757 | 0.3320 | 0.2199 | 0.2087 | 0.4558 | 0.3311 | 0.4292 |
| Llama 3.1 8B | 0.8436 | 0.4461 | 0.4050 | 0.8962 | 0.1794 | 0.3560 | 0.2209 | 0.2077 | 0.4767 | 0.3274 | 0.4359 |
| Llama 3 Youko 8B | 0.8660 | 0.4902 | 0.5155 | 0.8947 | 0.2127 | 0.2840 | 0.2740 | 0.2180 | 0.4493 | 0.2183 | 0.4423 |
| Llama 3 Swallow 8B | 0.8945 | 0.4848 | 0.5640 | 0.8947 | 0.1981 | 0.4240 | 0.2758 | 0.2223 | 0.4699 | 0.2890 | 0.4717 |
| Llama 3.1 Swallow 8B v0.1 | 0.9124 | 0.5092 | 0.6011 | 0.8991 | 0.2020 | 0.4600 | 0.2909 | 0.2313 | 0.5182 | 0.2811 | 0.4905 |
| Llama 3.1 Swallow 8B v0.2 | 0.9106 | **0.5097** | 0.6272 |	0.8922 | 0.1976 | 0.4640 | **0.2957** | **0.2326** | 0.5253 | 0.3360 | **0.4991** |

### English tasks

|Model|OpenBookQA|TriviaQA|HellaSWAG|SQuAD2.0|XWINO|MMLU|GSM8K|BBH|HumanEval|En Avg|
|---|---|---|---|---|---|---|---|---|---|---|
|   |4-shot|4-shot|4-shot|4-shot|4-shot|5-shot|4-shot|3-shot|0-shot|   |
|   |Acc|EM acc|Acc|EM acc|Acc|Acc|EM acc|CoT EM Acc|pass@1|   |
| Qwen2-7B | 0.3740 | 0.6105 | 0.6006 | 0.3623 | 0.8916 | 0.7045 | 0.7748 | 0.5325 | **0.4622** | 0.5903 |
| Qwen2.5-7B | **0.3940** | 0.6011 | 0.5999 | **0.3743** | 0.8890 | **0.7424** | **0.8324** | 0.5620 | 0.4213 | **0.6018** |
| Sarashina2-7B | 0.3420 | 0.4784 | 0.5327 | 0.2911 | 0.8903 | 0.4267 | 0.1008 | 0.3746 | 0.0000 | 0.3818 |
| Llama 3 8B | 0.3760 | **0.7109** | **0.6124** | 0.3356 | 0.9032 | 0.6509 | 0.4936 | **0.6211** | 0.3793 | 0.5648 |
| Llama 3.1 8B | 0.3780 | 0.7017 | 0.6094 | 0.3330 | **0.9045** | 0.6525 | 0.5057 | 0.6176 | 0.3695 | 0.5636 |
| Llama 3 Youko 8B | 0.3500 | 0.6252 | 0.5885 | 0.3247 | 0.8959 | 0.5993 | 0.3571 | 0.5704 | 0.2793 | 0.5100 |
| Llama 3 Swallow 8B | 0.3520 | 0.6563 | 0.5901 | 0.3507 | 0.9006 | 0.6152 | 0.4875 | 0.5936 | 0.3323 | 0.5420 |
| Llama 3.1 Swallow 8B v0.1 | 0.3800 | 0.6711 | 0.6057 | 0.3468 | 0.9032 | 0.6237 | 0.5110 | 0.6153 | 0.3622 | 0.5577 |
| Llama 3.1 Swallow 8B v0.2 | 0.3820 | 0.6510 | 0.5955 | 0.3473 | 0.9041 | 0.6227 | 0.5208 | 0.6053 | 0.3659 | 0.5549 |

## Evaluation Benchmarks

### Japanese evaluation benchmarks

We used llm-jp-eval(v1.3.0), JP Language Model Evaluation Harness(commit #9b42d41) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows:

- Multiple-choice question answering (JCommonsenseQA [Kurihara et al., 2022])
- Open-ended question answering (JEMHopQA [Ishii et al., 2024])
- Open-ended question answering (NIILC [関根, 2003])
- Machine reading comprehension (JSQuAD [Kurihara et al., 2022])
- Automatic summarization (XL-Sum [Hasan et al., 2021])
- Machine translation (WMT2020 ja-en [Barrault et al., 2020])
- Machine translation (WMT2020 en-ja [Barrault et al., 2020])
- Mathematical reasoning (MGSM [Shi et al., 2023])
- Academic exams (JMMLU [尹ら, 2024])
- Code generation (JHumanEval [佐藤ら, 2024])

### English evaluation benchmarks

We used the Language Model Evaluation Harness(v.0.4.2) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows:

- Multiple-choice question answering (OpenBookQA [Mihaylov et al., 2018])
- Open-ended question answering (TriviaQA [Joshi et al., 2017])
- Machine reading comprehension (SQuAD2 [Rajpurkar et al., 2018])
- Commonsense reasoning (XWINO [Tikhonov and Ryabinin, 2021])
- Natural language inference (HellaSwag [Zellers et al., 2019])
- Mathematical reasoning (GSM8K [Cobbe et al., 2021])
- Reasoning (BBH (BIG-Bench-Hard) [Suzgun et al., 2023])
- Academic exams (MMLU [Hendrycks et al., 2021])
- Code generation (HumanEval [Chen et al., 2021])

## Training Datasets

### Continual Pre-Training
The following datasets were used for continual pre-training.

- [Cosmopedia](https://huggingface.co/datasets/HuggingFaceTB/cosmopedia)
- [Dclm-baseline-1.0](https://huggingface.co/datasets/mlfoundations/dclm-baseline-1.0)
- [English Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
- [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
- [Laboro ParaCorpus](https://github.com/laboroai/Laboro-ParaCorpus)
- [Swallow Corpus Version 2](https://arxiv.org/abs/2404.17733)
- [The-stack-v2(filtered)]()
 
### Swallow Corpus Version 2

We built the Swallow Corpus by extracting high-quality Japanese texts from Common Crawl. In Version 2, we expanded the scope of the Common Crawl collection and modified the pipeline sequence to enable more flexible quality filtering. 
For Llama 3.1 Swallow v0.2, we further refined our quality filtering and data sampling strategies, resulting in an even higher-quality selection of Japanese texts for pre-training.

Further details of the methodology and analysis will be provided in a forthcoming paper.

### The-stack-v2(filtered)

We created a high-quality Python code corpus, The-Stack-v2(filtered), by applying filtering to [The-Stack-v2-train-smol-ids](https://huggingface.co/datasets/bigcode/the-stack-v2-train-smol-ids).
This filtering process utilizes Python's compile() function, pylint, and language detection on comments within the code to select only data that meets a certain quality threshold. Further details will be available in our forthcoming paper.

## Risks and Limitations

The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.

## Acknowledgements

We thank Meta Research for releasing Llama 3.1 under a generous open license.

We received various supports including:

+ AIST project: "Research and Development of Foundation Models for Generative AI in the Physical Domain"
+ NEDO project: "Development of Artificial Intelligence Application Technology to Support Judgment in Design Risk Assessment Work Based on the Perspective of Skilled Persons" (JPNP18002) of "Development of Integration Technology as the Core of Next Generation Artificial Intelligence and Robotics"
+ MEXT project: "Formation of R&D center to ensure transparency and reliability of generative AI models"
+ AIST program: [Large Generative AI Development Support Program](https://abci.ai/en/link/lfm_support_program.html)

## License

[META LLAMA 3.1 COMMUNITY LICENSE](https://www.llama.com/llama3_1/license/)

## Authors

Here are the team members:
- From [Tokyo Institute of Technology Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members:
  - [Naoaki Okazaki](https://www.chokkan.org/index.ja.html)
  - [Sakae Mizuki](https://s-mizuki-nlp.github.io/)
  - [Youmi Ma](https://www.nlp.c.titech.ac.jp/member/youmi.en.html)
  - [Koki Maeda](https://sites.google.com/view/silviase)
  - [Kakeru Hattori](https://aya-se.vercel.app/)
  - [Masanari Ohi](https://sites.google.com/view/masanariohi)
  - [Taihei Shiotani](https://github.com/inatoihs)
  - [Koshiro Saito](https://sites.google.com/view/koshiro-saito)
- From [Tokyo Institute of Technology YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members:
  - [Rio Yokota](https://twitter.com/rioyokota)
  - [Kazuki Fujii](https://twitter.com/okoge_kaz)
  - [Taishi Nakamura](https://twitter.com/Setuna7777_2)
  - [Takumi Okamoto](https://www.linkedin.com/in/takumi-okamoto)
  - [Ishida Shigeki](https://www.wantedly.com/id/reborn27)
- From [Artificial Intelligence Research Center, AIST, Japan](https://www.airc.aist.go.jp/en/teams/), the following members:
  - [Hiroya Takamura](https://sites.google.com/view/hjtakamura)

## How to cite

If you find our work helpful, please feel free to cite these papers.

```
@inproceedings{Fujii:COLM2024,
   title={Continual Pre-Training for Cross-Lingual LLM Adaptation:
Enhancing Japanese Language Capabilities},
   author={Kazuki Fujii and Taishi Nakamura and Mengsay Loem and Hiroki
Iida and Masanari Ohi and Kakeru Hattori and Hirai Shota and Sakae
Mizuki and Rio Yokota and Naoaki Okazaki},
   booktitle="Proceedings of the First Conference on Language Modeling",
   series={COLM},
   pages="(to appear)",
   year="2024",
   month=oct,
   address={University of Pennsylvania, USA},
}

@inproceedings{Okazaki:COLM2024,
   title={Building a Large Japanese Web Corpus for Large Language Models},
   author={Naoaki Okazaki and Kakeru Hattori and Hirai Shota and Hiroki
Iida and Masanari Ohi and Kazuki Fujii and Taishi Nakamura and Mengsay
Loem and Rio Yokota and Sakae Mizuki},
   booktitle="Proceedings of the First Conference on Language Modeling",
   series={COLM},
   pages="(to appear)",
   year="2024",
   month=oct,
   address={University of Pennsylvania, USA},
}
```

### References

```tex
@misc{dubey2024llama3herdmodels,
      title={The Llama 3 Herd of Models}, 
      author={Abhimanyu Dubey and Abhinav Jauhri and Abhinav Pandey and Abhishek Kadian and Ahmad Al-Dahle and Aiesha Letman and Akhil Mathur and Alan Schelten and Amy Yang and Angela Fan et al.},
      year={2024},
      eprint={2407.21783},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2407.21783}, 
}
```