File size: 6,644 Bytes
c39cb98 a563caa c39cb98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
---
language: en
license: cc-by-sa-4.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
base_model: FacebookAI/xlm-roberta-base
datasets:
- norne
metrics:
- precision
- recall
- f1
widget:
- text: Av Boethius hand förelåg De institutione arithmetica (" Om aritmetikens grunder
") i två böcker.
- text: Hans hovedmotstander var lederen for opposisjonspartiet Movement for Democratic
Change, Morgan Tsvangirai.
- text: Roddarn blir proffs efter OS.
- text: Han blev dog diskvalificeret for at have trådt på banelinjen, og bronzemedaljen
gik i stedet til landsmanden Walter Dix.
- text: Stillingen var på dette tidspunkt 1-1, men Almunias redning banede vejen for
et sejrsmål af danske Nicklas Bendtner.
pipeline_tag: token-classification
model-index:
- name: SpanMarker with FacebookAI/xlm-roberta-base on norne
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: norne
type: norne
split: test
metrics:
- type: f1
value: 0.9181825779313034
name: F1
- type: precision
value: 0.9217689611454993
name: Precision
- type: recall
value: 0.9146239940801036
name: Recall
---
# SpanMarker with xlm-roberta-base
Trained on various nordic lang. datasets: see https://huggingface.co/datasets/tollefj/nordic-ner
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [norne](https://huggingface.co/datasets/norne) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) as the underlying encoder.
## Model Details
### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [norne](https://huggingface.co/datasets/norne)
- **Language:** en
- **License:** cc-by-sa-4.0
### Model Sources
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
### Model Labels
| Label | Examples |
|:------|:-------------------------------------------------------------|
| LOC | "Gran", "Leicestershire", "Den tyske antarktisekspedisjonen" |
| MISC | "socialdemokratiske", "nationalist", "Living Legend" |
| ORG | "Stabæk", "Samlaget", "Marillion" |
| PER | "Fish", "Dmitrij Medvedev", "Guru Ardjan Dev" |
## Evaluation
### Metrics
| Label | Precision | Recall | F1 |
|:--------|:----------|:-------|:-------|
| **all** | 0.9218 | 0.9146 | 0.9182 |
| LOC | 0.9284 | 0.9433 | 0.9358 |
| MISC | 0.6515 | 0.6047 | 0.6272 |
| ORG | 0.8951 | 0.8547 | 0.8745 |
| PER | 0.9513 | 0.9526 | 0.9520 |
## Uses
### Direct Use for Inference
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Run inference
entities = model.predict("Roddarn blir proffs efter OS.")
```
### Downstream Use
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
```python
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span_marker_model_id")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span_marker_model_id-finetuned")
```
</details>
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:----------------------|:----|:--------|:----|
| Sentence length | 1 | 12.8175 | 331 |
| Entities per sentence | 0 | 1.0055 | 54 |
### Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training Results
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:-----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.5711 | 3000 | 0.0146 | 0.8650 | 0.8725 | 0.8687 | 0.9722 |
| 1.1422 | 6000 | 0.0123 | 0.8994 | 0.8920 | 0.8957 | 0.9778 |
| 1.7133 | 9000 | 0.0101 | 0.9184 | 0.8984 | 0.9083 | 0.9805 |
| 2.2844 | 12000 | 0.0101 | 0.9198 | 0.9110 | 0.9154 | 0.9818 |
| 2.8555 | 15000 | 0.0089 | 0.9245 | 0.9150 | 0.9197 | 0.9830 |
### Framework Versions
- Python: 3.12.2
- SpanMarker: 1.5.0
- Transformers: 4.38.2
- PyTorch: 2.2.1+cu121
- Datasets: 2.18.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |