Add new SentenceTransformer model.
Browse files- 1_Pooling/config.json +10 -0
- README.md +1010 -0
- config.json +24 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +62 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,1010 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
library_name: sentence-transformers
|
5 |
+
tags:
|
6 |
+
- sentence-transformers
|
7 |
+
- sentence-similarity
|
8 |
+
- feature-extraction
|
9 |
+
- loss:MatryoshkaLoss
|
10 |
+
- loss:CoSENTLoss
|
11 |
+
base_model: distilbert/distilbert-base-uncased
|
12 |
+
metrics:
|
13 |
+
- pearson_cosine
|
14 |
+
- spearman_cosine
|
15 |
+
- pearson_manhattan
|
16 |
+
- spearman_manhattan
|
17 |
+
- pearson_euclidean
|
18 |
+
- spearman_euclidean
|
19 |
+
- pearson_dot
|
20 |
+
- spearman_dot
|
21 |
+
- pearson_max
|
22 |
+
- spearman_max
|
23 |
+
widget:
|
24 |
+
- source_sentence: The gate is yellow.
|
25 |
+
sentences:
|
26 |
+
- The gate is blue.
|
27 |
+
- The person is starting a fire.
|
28 |
+
- A woman is bungee jumping.
|
29 |
+
- source_sentence: A plane in the sky.
|
30 |
+
sentences:
|
31 |
+
- Two airplanes in the sky.
|
32 |
+
- A man is standing in the rain.
|
33 |
+
- There are two men near a wall.
|
34 |
+
- source_sentence: A woman is reading.
|
35 |
+
sentences:
|
36 |
+
- A woman is writing something.
|
37 |
+
- A woman is applying eye shadow.
|
38 |
+
- A dog and a red ball in the air.
|
39 |
+
- source_sentence: A baby is laughing.
|
40 |
+
sentences:
|
41 |
+
- The baby laughed in his car seat.
|
42 |
+
- Suicide bomber strikes in Syria
|
43 |
+
- Bangladesh Islamist execution upheld
|
44 |
+
- source_sentence: A woman is dancing.
|
45 |
+
sentences:
|
46 |
+
- A woman is dancing in railway station.
|
47 |
+
- The flag was moving in the air.
|
48 |
+
- three dogs growling On one another
|
49 |
+
pipeline_tag: sentence-similarity
|
50 |
+
co2_eq_emissions:
|
51 |
+
emissions: 7.871164130493101
|
52 |
+
energy_consumed: 0.020249867843471606
|
53 |
+
source: codecarbon
|
54 |
+
training_type: fine-tuning
|
55 |
+
on_cloud: false
|
56 |
+
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
57 |
+
ram_total_size: 31.777088165283203
|
58 |
+
hours_used: 0.112
|
59 |
+
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
60 |
+
model-index:
|
61 |
+
- name: SentenceTransformer based on distilbert/distilbert-base-uncased
|
62 |
+
results:
|
63 |
+
- task:
|
64 |
+
type: semantic-similarity
|
65 |
+
name: Semantic Similarity
|
66 |
+
dataset:
|
67 |
+
name: sts dev 768
|
68 |
+
type: sts-dev-768
|
69 |
+
metrics:
|
70 |
+
- type: pearson_cosine
|
71 |
+
value: 0.8647737221000229
|
72 |
+
name: Pearson Cosine
|
73 |
+
- type: spearman_cosine
|
74 |
+
value: 0.8747521728687471
|
75 |
+
name: Spearman Cosine
|
76 |
+
- type: pearson_manhattan
|
77 |
+
value: 0.8627734228763478
|
78 |
+
name: Pearson Manhattan
|
79 |
+
- type: spearman_manhattan
|
80 |
+
value: 0.8657556253211545
|
81 |
+
name: Spearman Manhattan
|
82 |
+
- type: pearson_euclidean
|
83 |
+
value: 0.862712112144467
|
84 |
+
name: Pearson Euclidean
|
85 |
+
- type: spearman_euclidean
|
86 |
+
value: 0.8657615257280495
|
87 |
+
name: Spearman Euclidean
|
88 |
+
- type: pearson_dot
|
89 |
+
value: 0.7442745641899206
|
90 |
+
name: Pearson Dot
|
91 |
+
- type: spearman_dot
|
92 |
+
value: 0.7513830366520415
|
93 |
+
name: Spearman Dot
|
94 |
+
- type: pearson_max
|
95 |
+
value: 0.8647737221000229
|
96 |
+
name: Pearson Max
|
97 |
+
- type: spearman_max
|
98 |
+
value: 0.8747521728687471
|
99 |
+
name: Spearman Max
|
100 |
+
- task:
|
101 |
+
type: semantic-similarity
|
102 |
+
name: Semantic Similarity
|
103 |
+
dataset:
|
104 |
+
name: sts dev 512
|
105 |
+
type: sts-dev-512
|
106 |
+
metrics:
|
107 |
+
- type: pearson_cosine
|
108 |
+
value: 0.8628378541768764
|
109 |
+
name: Pearson Cosine
|
110 |
+
- type: spearman_cosine
|
111 |
+
value: 0.8741345340758229
|
112 |
+
name: Spearman Cosine
|
113 |
+
- type: pearson_manhattan
|
114 |
+
value: 0.8619744745534216
|
115 |
+
name: Pearson Manhattan
|
116 |
+
- type: spearman_manhattan
|
117 |
+
value: 0.8651450292937584
|
118 |
+
name: Spearman Manhattan
|
119 |
+
- type: pearson_euclidean
|
120 |
+
value: 0.8622841683977804
|
121 |
+
name: Pearson Euclidean
|
122 |
+
- type: spearman_euclidean
|
123 |
+
value: 0.8653280682431165
|
124 |
+
name: Spearman Euclidean
|
125 |
+
- type: pearson_dot
|
126 |
+
value: 0.746359236761633
|
127 |
+
name: Pearson Dot
|
128 |
+
- type: spearman_dot
|
129 |
+
value: 0.7540849763868891
|
130 |
+
name: Spearman Dot
|
131 |
+
- type: pearson_max
|
132 |
+
value: 0.8628378541768764
|
133 |
+
name: Pearson Max
|
134 |
+
- type: spearman_max
|
135 |
+
value: 0.8741345340758229
|
136 |
+
name: Spearman Max
|
137 |
+
- task:
|
138 |
+
type: semantic-similarity
|
139 |
+
name: Semantic Similarity
|
140 |
+
dataset:
|
141 |
+
name: sts dev 256
|
142 |
+
type: sts-dev-256
|
143 |
+
metrics:
|
144 |
+
- type: pearson_cosine
|
145 |
+
value: 0.8588975886507025
|
146 |
+
name: Pearson Cosine
|
147 |
+
- type: spearman_cosine
|
148 |
+
value: 0.8714341050301952
|
149 |
+
name: Spearman Cosine
|
150 |
+
- type: pearson_manhattan
|
151 |
+
value: 0.8590790006287132
|
152 |
+
name: Pearson Manhattan
|
153 |
+
- type: spearman_manhattan
|
154 |
+
value: 0.8634123185807864
|
155 |
+
name: Spearman Manhattan
|
156 |
+
- type: pearson_euclidean
|
157 |
+
value: 0.8591861535833625
|
158 |
+
name: Pearson Euclidean
|
159 |
+
- type: spearman_euclidean
|
160 |
+
value: 0.8628587088112977
|
161 |
+
name: Spearman Euclidean
|
162 |
+
- type: pearson_dot
|
163 |
+
value: 0.7185871795192371
|
164 |
+
name: Pearson Dot
|
165 |
+
- type: spearman_dot
|
166 |
+
value: 0.7288595287151053
|
167 |
+
name: Spearman Dot
|
168 |
+
- type: pearson_max
|
169 |
+
value: 0.8591861535833625
|
170 |
+
name: Pearson Max
|
171 |
+
- type: spearman_max
|
172 |
+
value: 0.8714341050301952
|
173 |
+
name: Spearman Max
|
174 |
+
- task:
|
175 |
+
type: semantic-similarity
|
176 |
+
name: Semantic Similarity
|
177 |
+
dataset:
|
178 |
+
name: sts dev 128
|
179 |
+
type: sts-dev-128
|
180 |
+
metrics:
|
181 |
+
- type: pearson_cosine
|
182 |
+
value: 0.8528583626543365
|
183 |
+
name: Pearson Cosine
|
184 |
+
- type: spearman_cosine
|
185 |
+
value: 0.8687502864484896
|
186 |
+
name: Spearman Cosine
|
187 |
+
- type: pearson_manhattan
|
188 |
+
value: 0.8509433708242649
|
189 |
+
name: Pearson Manhattan
|
190 |
+
- type: spearman_manhattan
|
191 |
+
value: 0.857615159782176
|
192 |
+
name: Spearman Manhattan
|
193 |
+
- type: pearson_euclidean
|
194 |
+
value: 0.8531616082767298
|
195 |
+
name: Pearson Euclidean
|
196 |
+
- type: spearman_euclidean
|
197 |
+
value: 0.8580823134153918
|
198 |
+
name: Spearman Euclidean
|
199 |
+
- type: pearson_dot
|
200 |
+
value: 0.697019210549756
|
201 |
+
name: Pearson Dot
|
202 |
+
- type: spearman_dot
|
203 |
+
value: 0.705924438927243
|
204 |
+
name: Spearman Dot
|
205 |
+
- type: pearson_max
|
206 |
+
value: 0.8531616082767298
|
207 |
+
name: Pearson Max
|
208 |
+
- type: spearman_max
|
209 |
+
value: 0.8687502864484896
|
210 |
+
name: Spearman Max
|
211 |
+
- task:
|
212 |
+
type: semantic-similarity
|
213 |
+
name: Semantic Similarity
|
214 |
+
dataset:
|
215 |
+
name: sts dev 64
|
216 |
+
type: sts-dev-64
|
217 |
+
metrics:
|
218 |
+
- type: pearson_cosine
|
219 |
+
value: 0.8340115410608493
|
220 |
+
name: Pearson Cosine
|
221 |
+
- type: spearman_cosine
|
222 |
+
value: 0.858682843519445
|
223 |
+
name: Spearman Cosine
|
224 |
+
- type: pearson_manhattan
|
225 |
+
value: 0.8351566362279711
|
226 |
+
name: Pearson Manhattan
|
227 |
+
- type: spearman_manhattan
|
228 |
+
value: 0.8445869885309296
|
229 |
+
name: Spearman Manhattan
|
230 |
+
- type: pearson_euclidean
|
231 |
+
value: 0.838674217877368
|
232 |
+
name: Pearson Euclidean
|
233 |
+
- type: spearman_euclidean
|
234 |
+
value: 0.8460894143343873
|
235 |
+
name: Spearman Euclidean
|
236 |
+
- type: pearson_dot
|
237 |
+
value: 0.6579249229659768
|
238 |
+
name: Pearson Dot
|
239 |
+
- type: spearman_dot
|
240 |
+
value: 0.6712615573330701
|
241 |
+
name: Spearman Dot
|
242 |
+
- type: pearson_max
|
243 |
+
value: 0.838674217877368
|
244 |
+
name: Pearson Max
|
245 |
+
- type: spearman_max
|
246 |
+
value: 0.858682843519445
|
247 |
+
name: Spearman Max
|
248 |
+
- task:
|
249 |
+
type: semantic-similarity
|
250 |
+
name: Semantic Similarity
|
251 |
+
dataset:
|
252 |
+
name: sts test 768
|
253 |
+
type: sts-test-768
|
254 |
+
metrics:
|
255 |
+
- type: pearson_cosine
|
256 |
+
value: 0.833720870548252
|
257 |
+
name: Pearson Cosine
|
258 |
+
- type: spearman_cosine
|
259 |
+
value: 0.8469501140979906
|
260 |
+
name: Spearman Cosine
|
261 |
+
- type: pearson_manhattan
|
262 |
+
value: 0.8484755252691695
|
263 |
+
name: Pearson Manhattan
|
264 |
+
- type: spearman_manhattan
|
265 |
+
value: 0.8470024066861298
|
266 |
+
name: Spearman Manhattan
|
267 |
+
- type: pearson_euclidean
|
268 |
+
value: 0.8492651445573072
|
269 |
+
name: Pearson Euclidean
|
270 |
+
- type: spearman_euclidean
|
271 |
+
value: 0.8475238481800537
|
272 |
+
name: Spearman Euclidean
|
273 |
+
- type: pearson_dot
|
274 |
+
value: 0.6701649984837568
|
275 |
+
name: Pearson Dot
|
276 |
+
- type: spearman_dot
|
277 |
+
value: 0.6526285131648061
|
278 |
+
name: Spearman Dot
|
279 |
+
- type: pearson_max
|
280 |
+
value: 0.8492651445573072
|
281 |
+
name: Pearson Max
|
282 |
+
- type: spearman_max
|
283 |
+
value: 0.8475238481800537
|
284 |
+
name: Spearman Max
|
285 |
+
- task:
|
286 |
+
type: semantic-similarity
|
287 |
+
name: Semantic Similarity
|
288 |
+
dataset:
|
289 |
+
name: sts test 512
|
290 |
+
type: sts-test-512
|
291 |
+
metrics:
|
292 |
+
- type: pearson_cosine
|
293 |
+
value: 0.8325595554355977
|
294 |
+
name: Pearson Cosine
|
295 |
+
- type: spearman_cosine
|
296 |
+
value: 0.8467500241650668
|
297 |
+
name: Spearman Cosine
|
298 |
+
- type: pearson_manhattan
|
299 |
+
value: 0.8474378528408064
|
300 |
+
name: Pearson Manhattan
|
301 |
+
- type: spearman_manhattan
|
302 |
+
value: 0.8462571021525837
|
303 |
+
name: Spearman Manhattan
|
304 |
+
- type: pearson_euclidean
|
305 |
+
value: 0.848182316243596
|
306 |
+
name: Pearson Euclidean
|
307 |
+
- type: spearman_euclidean
|
308 |
+
value: 0.8466275072216626
|
309 |
+
name: Spearman Euclidean
|
310 |
+
- type: pearson_dot
|
311 |
+
value: 0.6736686039338646
|
312 |
+
name: Pearson Dot
|
313 |
+
- type: spearman_dot
|
314 |
+
value: 0.6572299516736647
|
315 |
+
name: Spearman Dot
|
316 |
+
- type: pearson_max
|
317 |
+
value: 0.848182316243596
|
318 |
+
name: Pearson Max
|
319 |
+
- type: spearman_max
|
320 |
+
value: 0.8467500241650668
|
321 |
+
name: Spearman Max
|
322 |
+
- task:
|
323 |
+
type: semantic-similarity
|
324 |
+
name: Semantic Similarity
|
325 |
+
dataset:
|
326 |
+
name: sts test 256
|
327 |
+
type: sts-test-256
|
328 |
+
metrics:
|
329 |
+
- type: pearson_cosine
|
330 |
+
value: 0.8225923032714455
|
331 |
+
name: Pearson Cosine
|
332 |
+
- type: spearman_cosine
|
333 |
+
value: 0.8403145699624681
|
334 |
+
name: Spearman Cosine
|
335 |
+
- type: pearson_manhattan
|
336 |
+
value: 0.8420998942805191
|
337 |
+
name: Pearson Manhattan
|
338 |
+
- type: spearman_manhattan
|
339 |
+
value: 0.8419520394692916
|
340 |
+
name: Spearman Manhattan
|
341 |
+
- type: pearson_euclidean
|
342 |
+
value: 0.8434867831513
|
343 |
+
name: Pearson Euclidean
|
344 |
+
- type: spearman_euclidean
|
345 |
+
value: 0.8428522494561291
|
346 |
+
name: Spearman Euclidean
|
347 |
+
- type: pearson_dot
|
348 |
+
value: 0.6230179114374444
|
349 |
+
name: Pearson Dot
|
350 |
+
- type: spearman_dot
|
351 |
+
value: 0.6061595939729718
|
352 |
+
name: Spearman Dot
|
353 |
+
- type: pearson_max
|
354 |
+
value: 0.8434867831513
|
355 |
+
name: Pearson Max
|
356 |
+
- type: spearman_max
|
357 |
+
value: 0.8428522494561291
|
358 |
+
name: Spearman Max
|
359 |
+
- task:
|
360 |
+
type: semantic-similarity
|
361 |
+
name: Semantic Similarity
|
362 |
+
dataset:
|
363 |
+
name: sts test 128
|
364 |
+
type: sts-test-128
|
365 |
+
metrics:
|
366 |
+
- type: pearson_cosine
|
367 |
+
value: 0.8149976807930366
|
368 |
+
name: Pearson Cosine
|
369 |
+
- type: spearman_cosine
|
370 |
+
value: 0.8349547446101432
|
371 |
+
name: Spearman Cosine
|
372 |
+
- type: pearson_manhattan
|
373 |
+
value: 0.8351661617446753
|
374 |
+
name: Pearson Manhattan
|
375 |
+
- type: spearman_manhattan
|
376 |
+
value: 0.8360899024374612
|
377 |
+
name: Spearman Manhattan
|
378 |
+
- type: pearson_euclidean
|
379 |
+
value: 0.8375785243041524
|
380 |
+
name: Pearson Euclidean
|
381 |
+
- type: spearman_euclidean
|
382 |
+
value: 0.8375574347771609
|
383 |
+
name: Spearman Euclidean
|
384 |
+
- type: pearson_dot
|
385 |
+
value: 0.5958381414366161
|
386 |
+
name: Pearson Dot
|
387 |
+
- type: spearman_dot
|
388 |
+
value: 0.5793444545861678
|
389 |
+
name: Spearman Dot
|
390 |
+
- type: pearson_max
|
391 |
+
value: 0.8375785243041524
|
392 |
+
name: Pearson Max
|
393 |
+
- type: spearman_max
|
394 |
+
value: 0.8375574347771609
|
395 |
+
name: Spearman Max
|
396 |
+
- task:
|
397 |
+
type: semantic-similarity
|
398 |
+
name: Semantic Similarity
|
399 |
+
dataset:
|
400 |
+
name: sts test 64
|
401 |
+
type: sts-test-64
|
402 |
+
metrics:
|
403 |
+
- type: pearson_cosine
|
404 |
+
value: 0.7981336004264228
|
405 |
+
name: Pearson Cosine
|
406 |
+
- type: spearman_cosine
|
407 |
+
value: 0.8269913105115189
|
408 |
+
name: Spearman Cosine
|
409 |
+
- type: pearson_manhattan
|
410 |
+
value: 0.8238799955007295
|
411 |
+
name: Pearson Manhattan
|
412 |
+
- type: spearman_manhattan
|
413 |
+
value: 0.8289121477853545
|
414 |
+
name: Spearman Manhattan
|
415 |
+
- type: pearson_euclidean
|
416 |
+
value: 0.8278657744625194
|
417 |
+
name: Pearson Euclidean
|
418 |
+
- type: spearman_euclidean
|
419 |
+
value: 0.8314643517951371
|
420 |
+
name: Spearman Euclidean
|
421 |
+
- type: pearson_dot
|
422 |
+
value: 0.5206433480609991
|
423 |
+
name: Pearson Dot
|
424 |
+
- type: spearman_dot
|
425 |
+
value: 0.5067194535547845
|
426 |
+
name: Spearman Dot
|
427 |
+
- type: pearson_max
|
428 |
+
value: 0.8278657744625194
|
429 |
+
name: Pearson Max
|
430 |
+
- type: spearman_max
|
431 |
+
value: 0.8314643517951371
|
432 |
+
name: Spearman Max
|
433 |
+
---
|
434 |
+
|
435 |
+
# SentenceTransformer based on distilbert/distilbert-base-uncased
|
436 |
+
|
437 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
438 |
+
|
439 |
+
## Model Details
|
440 |
+
|
441 |
+
### Model Description
|
442 |
+
- **Model Type:** Sentence Transformer
|
443 |
+
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 6cdc0aad91f5ae2e6712e91bc7b65d1cf5c05411 -->
|
444 |
+
- **Maximum Sequence Length:** 512 tokens
|
445 |
+
- **Output Dimensionality:** 768 tokens
|
446 |
+
- **Similarity Function:** Cosine Similarity
|
447 |
+
- **Training Dataset:**
|
448 |
+
- [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
|
449 |
+
- **Language:** en
|
450 |
+
<!-- - **License:** Unknown -->
|
451 |
+
|
452 |
+
### Model Sources
|
453 |
+
|
454 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
455 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
456 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
457 |
+
|
458 |
+
### Full Model Architecture
|
459 |
+
|
460 |
+
```
|
461 |
+
SentenceTransformer(
|
462 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
|
463 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
464 |
+
)
|
465 |
+
```
|
466 |
+
|
467 |
+
## Usage
|
468 |
+
|
469 |
+
### Direct Usage (Sentence Transformers)
|
470 |
+
|
471 |
+
First install the Sentence Transformers library:
|
472 |
+
|
473 |
+
```bash
|
474 |
+
pip install -U sentence-transformers
|
475 |
+
```
|
476 |
+
|
477 |
+
Then you can load this model and run inference.
|
478 |
+
```python
|
479 |
+
from sentence_transformers import SentenceTransformer
|
480 |
+
|
481 |
+
# Download from the 🤗 Hub
|
482 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
483 |
+
# Run inference
|
484 |
+
sentences = [
|
485 |
+
'A woman is dancing.',
|
486 |
+
'A woman is dancing in railway station.',
|
487 |
+
'The flag was moving in the air.',
|
488 |
+
]
|
489 |
+
embeddings = model.encode(sentences)
|
490 |
+
print(embeddings.shape)
|
491 |
+
# [3, 768]
|
492 |
+
|
493 |
+
# Get the similarity scores for the embeddings
|
494 |
+
similarities = model.similarity(embeddings)
|
495 |
+
print(similarities.shape)
|
496 |
+
# [3, 3]
|
497 |
+
```
|
498 |
+
|
499 |
+
<!--
|
500 |
+
### Direct Usage (Transformers)
|
501 |
+
|
502 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
503 |
+
|
504 |
+
</details>
|
505 |
+
-->
|
506 |
+
|
507 |
+
<!--
|
508 |
+
### Downstream Usage (Sentence Transformers)
|
509 |
+
|
510 |
+
You can finetune this model on your own dataset.
|
511 |
+
|
512 |
+
<details><summary>Click to expand</summary>
|
513 |
+
|
514 |
+
</details>
|
515 |
+
-->
|
516 |
+
|
517 |
+
<!--
|
518 |
+
### Out-of-Scope Use
|
519 |
+
|
520 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
521 |
+
-->
|
522 |
+
|
523 |
+
## Evaluation
|
524 |
+
|
525 |
+
### Metrics
|
526 |
+
|
527 |
+
#### Semantic Similarity
|
528 |
+
* Dataset: `sts-dev-768`
|
529 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
530 |
+
|
531 |
+
| Metric | Value |
|
532 |
+
|:--------------------|:-----------|
|
533 |
+
| pearson_cosine | 0.8648 |
|
534 |
+
| **spearman_cosine** | **0.8748** |
|
535 |
+
| pearson_manhattan | 0.8628 |
|
536 |
+
| spearman_manhattan | 0.8658 |
|
537 |
+
| pearson_euclidean | 0.8627 |
|
538 |
+
| spearman_euclidean | 0.8658 |
|
539 |
+
| pearson_dot | 0.7443 |
|
540 |
+
| spearman_dot | 0.7514 |
|
541 |
+
| pearson_max | 0.8648 |
|
542 |
+
| spearman_max | 0.8748 |
|
543 |
+
|
544 |
+
#### Semantic Similarity
|
545 |
+
* Dataset: `sts-dev-512`
|
546 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
547 |
+
|
548 |
+
| Metric | Value |
|
549 |
+
|:--------------------|:-----------|
|
550 |
+
| pearson_cosine | 0.8628 |
|
551 |
+
| **spearman_cosine** | **0.8741** |
|
552 |
+
| pearson_manhattan | 0.862 |
|
553 |
+
| spearman_manhattan | 0.8651 |
|
554 |
+
| pearson_euclidean | 0.8623 |
|
555 |
+
| spearman_euclidean | 0.8653 |
|
556 |
+
| pearson_dot | 0.7464 |
|
557 |
+
| spearman_dot | 0.7541 |
|
558 |
+
| pearson_max | 0.8628 |
|
559 |
+
| spearman_max | 0.8741 |
|
560 |
+
|
561 |
+
#### Semantic Similarity
|
562 |
+
* Dataset: `sts-dev-256`
|
563 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
564 |
+
|
565 |
+
| Metric | Value |
|
566 |
+
|:--------------------|:-----------|
|
567 |
+
| pearson_cosine | 0.8589 |
|
568 |
+
| **spearman_cosine** | **0.8714** |
|
569 |
+
| pearson_manhattan | 0.8591 |
|
570 |
+
| spearman_manhattan | 0.8634 |
|
571 |
+
| pearson_euclidean | 0.8592 |
|
572 |
+
| spearman_euclidean | 0.8629 |
|
573 |
+
| pearson_dot | 0.7186 |
|
574 |
+
| spearman_dot | 0.7289 |
|
575 |
+
| pearson_max | 0.8592 |
|
576 |
+
| spearman_max | 0.8714 |
|
577 |
+
|
578 |
+
#### Semantic Similarity
|
579 |
+
* Dataset: `sts-dev-128`
|
580 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
581 |
+
|
582 |
+
| Metric | Value |
|
583 |
+
|:--------------------|:-----------|
|
584 |
+
| pearson_cosine | 0.8529 |
|
585 |
+
| **spearman_cosine** | **0.8688** |
|
586 |
+
| pearson_manhattan | 0.8509 |
|
587 |
+
| spearman_manhattan | 0.8576 |
|
588 |
+
| pearson_euclidean | 0.8532 |
|
589 |
+
| spearman_euclidean | 0.8581 |
|
590 |
+
| pearson_dot | 0.697 |
|
591 |
+
| spearman_dot | 0.7059 |
|
592 |
+
| pearson_max | 0.8532 |
|
593 |
+
| spearman_max | 0.8688 |
|
594 |
+
|
595 |
+
#### Semantic Similarity
|
596 |
+
* Dataset: `sts-dev-64`
|
597 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
598 |
+
|
599 |
+
| Metric | Value |
|
600 |
+
|:--------------------|:-----------|
|
601 |
+
| pearson_cosine | 0.834 |
|
602 |
+
| **spearman_cosine** | **0.8587** |
|
603 |
+
| pearson_manhattan | 0.8352 |
|
604 |
+
| spearman_manhattan | 0.8446 |
|
605 |
+
| pearson_euclidean | 0.8387 |
|
606 |
+
| spearman_euclidean | 0.8461 |
|
607 |
+
| pearson_dot | 0.6579 |
|
608 |
+
| spearman_dot | 0.6713 |
|
609 |
+
| pearson_max | 0.8387 |
|
610 |
+
| spearman_max | 0.8587 |
|
611 |
+
|
612 |
+
#### Semantic Similarity
|
613 |
+
* Dataset: `sts-test-768`
|
614 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
615 |
+
|
616 |
+
| Metric | Value |
|
617 |
+
|:--------------------|:----------|
|
618 |
+
| pearson_cosine | 0.8337 |
|
619 |
+
| **spearman_cosine** | **0.847** |
|
620 |
+
| pearson_manhattan | 0.8485 |
|
621 |
+
| spearman_manhattan | 0.847 |
|
622 |
+
| pearson_euclidean | 0.8493 |
|
623 |
+
| spearman_euclidean | 0.8475 |
|
624 |
+
| pearson_dot | 0.6702 |
|
625 |
+
| spearman_dot | 0.6526 |
|
626 |
+
| pearson_max | 0.8493 |
|
627 |
+
| spearman_max | 0.8475 |
|
628 |
+
|
629 |
+
#### Semantic Similarity
|
630 |
+
* Dataset: `sts-test-512`
|
631 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
632 |
+
|
633 |
+
| Metric | Value |
|
634 |
+
|:--------------------|:-----------|
|
635 |
+
| pearson_cosine | 0.8326 |
|
636 |
+
| **spearman_cosine** | **0.8468** |
|
637 |
+
| pearson_manhattan | 0.8474 |
|
638 |
+
| spearman_manhattan | 0.8463 |
|
639 |
+
| pearson_euclidean | 0.8482 |
|
640 |
+
| spearman_euclidean | 0.8466 |
|
641 |
+
| pearson_dot | 0.6737 |
|
642 |
+
| spearman_dot | 0.6572 |
|
643 |
+
| pearson_max | 0.8482 |
|
644 |
+
| spearman_max | 0.8468 |
|
645 |
+
|
646 |
+
#### Semantic Similarity
|
647 |
+
* Dataset: `sts-test-256`
|
648 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
649 |
+
|
650 |
+
| Metric | Value |
|
651 |
+
|:--------------------|:-----------|
|
652 |
+
| pearson_cosine | 0.8226 |
|
653 |
+
| **spearman_cosine** | **0.8403** |
|
654 |
+
| pearson_manhattan | 0.8421 |
|
655 |
+
| spearman_manhattan | 0.842 |
|
656 |
+
| pearson_euclidean | 0.8435 |
|
657 |
+
| spearman_euclidean | 0.8429 |
|
658 |
+
| pearson_dot | 0.623 |
|
659 |
+
| spearman_dot | 0.6062 |
|
660 |
+
| pearson_max | 0.8435 |
|
661 |
+
| spearman_max | 0.8429 |
|
662 |
+
|
663 |
+
#### Semantic Similarity
|
664 |
+
* Dataset: `sts-test-128`
|
665 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
666 |
+
|
667 |
+
| Metric | Value |
|
668 |
+
|:--------------------|:----------|
|
669 |
+
| pearson_cosine | 0.815 |
|
670 |
+
| **spearman_cosine** | **0.835** |
|
671 |
+
| pearson_manhattan | 0.8352 |
|
672 |
+
| spearman_manhattan | 0.8361 |
|
673 |
+
| pearson_euclidean | 0.8376 |
|
674 |
+
| spearman_euclidean | 0.8376 |
|
675 |
+
| pearson_dot | 0.5958 |
|
676 |
+
| spearman_dot | 0.5793 |
|
677 |
+
| pearson_max | 0.8376 |
|
678 |
+
| spearman_max | 0.8376 |
|
679 |
+
|
680 |
+
#### Semantic Similarity
|
681 |
+
* Dataset: `sts-test-64`
|
682 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
683 |
+
|
684 |
+
| Metric | Value |
|
685 |
+
|:--------------------|:----------|
|
686 |
+
| pearson_cosine | 0.7981 |
|
687 |
+
| **spearman_cosine** | **0.827** |
|
688 |
+
| pearson_manhattan | 0.8239 |
|
689 |
+
| spearman_manhattan | 0.8289 |
|
690 |
+
| pearson_euclidean | 0.8279 |
|
691 |
+
| spearman_euclidean | 0.8315 |
|
692 |
+
| pearson_dot | 0.5206 |
|
693 |
+
| spearman_dot | 0.5067 |
|
694 |
+
| pearson_max | 0.8279 |
|
695 |
+
| spearman_max | 0.8315 |
|
696 |
+
|
697 |
+
<!--
|
698 |
+
## Bias, Risks and Limitations
|
699 |
+
|
700 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
701 |
+
-->
|
702 |
+
|
703 |
+
<!--
|
704 |
+
### Recommendations
|
705 |
+
|
706 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
707 |
+
-->
|
708 |
+
|
709 |
+
## Training Details
|
710 |
+
|
711 |
+
### Training Dataset
|
712 |
+
|
713 |
+
#### sentence-transformers/stsb
|
714 |
+
|
715 |
+
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
|
716 |
+
* Size: 5,749 training samples
|
717 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
718 |
+
* Approximate statistics based on the first 1000 samples:
|
719 |
+
| | sentence1 | sentence2 | score |
|
720 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
721 |
+
| type | string | string | float |
|
722 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
|
723 |
+
* Samples:
|
724 |
+
| sentence1 | sentence2 | score |
|
725 |
+
|:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
|
726 |
+
| <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
|
727 |
+
| <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
|
728 |
+
| <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
|
729 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters:
|
730 |
+
```json
|
731 |
+
{
|
732 |
+
"loss": "CoSENTLoss",
|
733 |
+
"matryoshka_dims": [
|
734 |
+
768,
|
735 |
+
512,
|
736 |
+
256,
|
737 |
+
128,
|
738 |
+
64
|
739 |
+
],
|
740 |
+
"matryoshka_weights": [
|
741 |
+
1,
|
742 |
+
1,
|
743 |
+
1,
|
744 |
+
1,
|
745 |
+
1
|
746 |
+
],
|
747 |
+
"n_dims_per_step": -1
|
748 |
+
}
|
749 |
+
```
|
750 |
+
|
751 |
+
### Evaluation Dataset
|
752 |
+
|
753 |
+
#### sentence-transformers/stsb
|
754 |
+
|
755 |
+
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
|
756 |
+
* Size: 1,500 evaluation samples
|
757 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
758 |
+
* Approximate statistics based on the first 1000 samples:
|
759 |
+
| | sentence1 | sentence2 | score |
|
760 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
761 |
+
| type | string | string | float |
|
762 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
|
763 |
+
* Samples:
|
764 |
+
| sentence1 | sentence2 | score |
|
765 |
+
|:--------------------------------------------------|:------------------------------------------------------|:------------------|
|
766 |
+
| <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
|
767 |
+
| <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
|
768 |
+
| <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
|
769 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters:
|
770 |
+
```json
|
771 |
+
{
|
772 |
+
"loss": "CoSENTLoss",
|
773 |
+
"matryoshka_dims": [
|
774 |
+
768,
|
775 |
+
512,
|
776 |
+
256,
|
777 |
+
128,
|
778 |
+
64
|
779 |
+
],
|
780 |
+
"matryoshka_weights": [
|
781 |
+
1,
|
782 |
+
1,
|
783 |
+
1,
|
784 |
+
1,
|
785 |
+
1
|
786 |
+
],
|
787 |
+
"n_dims_per_step": -1
|
788 |
+
}
|
789 |
+
```
|
790 |
+
|
791 |
+
### Training Hyperparameters
|
792 |
+
#### Non-Default Hyperparameters
|
793 |
+
|
794 |
+
- `eval_strategy`: steps
|
795 |
+
- `per_device_train_batch_size`: 16
|
796 |
+
- `per_device_eval_batch_size`: 16
|
797 |
+
- `num_train_epochs`: 4
|
798 |
+
- `warmup_ratio`: 0.1
|
799 |
+
- `fp16`: True
|
800 |
+
|
801 |
+
#### All Hyperparameters
|
802 |
+
<details><summary>Click to expand</summary>
|
803 |
+
|
804 |
+
- `overwrite_output_dir`: False
|
805 |
+
- `do_predict`: False
|
806 |
+
- `eval_strategy`: steps
|
807 |
+
- `prediction_loss_only`: False
|
808 |
+
- `per_device_train_batch_size`: 16
|
809 |
+
- `per_device_eval_batch_size`: 16
|
810 |
+
- `per_gpu_train_batch_size`: None
|
811 |
+
- `per_gpu_eval_batch_size`: None
|
812 |
+
- `gradient_accumulation_steps`: 1
|
813 |
+
- `eval_accumulation_steps`: None
|
814 |
+
- `learning_rate`: 5e-05
|
815 |
+
- `weight_decay`: 0.0
|
816 |
+
- `adam_beta1`: 0.9
|
817 |
+
- `adam_beta2`: 0.999
|
818 |
+
- `adam_epsilon`: 1e-08
|
819 |
+
- `max_grad_norm`: 1.0
|
820 |
+
- `num_train_epochs`: 4
|
821 |
+
- `max_steps`: -1
|
822 |
+
- `lr_scheduler_type`: linear
|
823 |
+
- `lr_scheduler_kwargs`: {}
|
824 |
+
- `warmup_ratio`: 0.1
|
825 |
+
- `warmup_steps`: 0
|
826 |
+
- `log_level`: passive
|
827 |
+
- `log_level_replica`: warning
|
828 |
+
- `log_on_each_node`: True
|
829 |
+
- `logging_nan_inf_filter`: True
|
830 |
+
- `save_safetensors`: True
|
831 |
+
- `save_on_each_node`: False
|
832 |
+
- `save_only_model`: False
|
833 |
+
- `no_cuda`: False
|
834 |
+
- `use_cpu`: False
|
835 |
+
- `use_mps_device`: False
|
836 |
+
- `seed`: 42
|
837 |
+
- `data_seed`: None
|
838 |
+
- `jit_mode_eval`: False
|
839 |
+
- `use_ipex`: False
|
840 |
+
- `bf16`: False
|
841 |
+
- `fp16`: True
|
842 |
+
- `fp16_opt_level`: O1
|
843 |
+
- `half_precision_backend`: auto
|
844 |
+
- `bf16_full_eval`: False
|
845 |
+
- `fp16_full_eval`: False
|
846 |
+
- `tf32`: None
|
847 |
+
- `local_rank`: 0
|
848 |
+
- `ddp_backend`: None
|
849 |
+
- `tpu_num_cores`: None
|
850 |
+
- `tpu_metrics_debug`: False
|
851 |
+
- `debug`: []
|
852 |
+
- `dataloader_drop_last`: False
|
853 |
+
- `dataloader_num_workers`: 0
|
854 |
+
- `dataloader_prefetch_factor`: None
|
855 |
+
- `past_index`: -1
|
856 |
+
- `disable_tqdm`: False
|
857 |
+
- `remove_unused_columns`: True
|
858 |
+
- `label_names`: None
|
859 |
+
- `load_best_model_at_end`: False
|
860 |
+
- `ignore_data_skip`: False
|
861 |
+
- `fsdp`: []
|
862 |
+
- `fsdp_min_num_params`: 0
|
863 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
864 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
865 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
866 |
+
- `deepspeed`: None
|
867 |
+
- `label_smoothing_factor`: 0.0
|
868 |
+
- `optim`: adamw_torch
|
869 |
+
- `optim_args`: None
|
870 |
+
- `adafactor`: False
|
871 |
+
- `group_by_length`: False
|
872 |
+
- `length_column_name`: length
|
873 |
+
- `ddp_find_unused_parameters`: None
|
874 |
+
- `ddp_bucket_cap_mb`: None
|
875 |
+
- `ddp_broadcast_buffers`: None
|
876 |
+
- `dataloader_pin_memory`: True
|
877 |
+
- `dataloader_persistent_workers`: False
|
878 |
+
- `skip_memory_metrics`: True
|
879 |
+
- `use_legacy_prediction_loop`: False
|
880 |
+
- `push_to_hub`: False
|
881 |
+
- `resume_from_checkpoint`: None
|
882 |
+
- `hub_model_id`: None
|
883 |
+
- `hub_strategy`: every_save
|
884 |
+
- `hub_private_repo`: False
|
885 |
+
- `hub_always_push`: False
|
886 |
+
- `gradient_checkpointing`: False
|
887 |
+
- `gradient_checkpointing_kwargs`: None
|
888 |
+
- `include_inputs_for_metrics`: False
|
889 |
+
- `eval_do_concat_batches`: True
|
890 |
+
- `fp16_backend`: auto
|
891 |
+
- `push_to_hub_model_id`: None
|
892 |
+
- `push_to_hub_organization`: None
|
893 |
+
- `mp_parameters`:
|
894 |
+
- `auto_find_batch_size`: False
|
895 |
+
- `full_determinism`: False
|
896 |
+
- `torchdynamo`: None
|
897 |
+
- `ray_scope`: last
|
898 |
+
- `ddp_timeout`: 1800
|
899 |
+
- `torch_compile`: False
|
900 |
+
- `torch_compile_backend`: None
|
901 |
+
- `torch_compile_mode`: None
|
902 |
+
- `dispatch_batches`: None
|
903 |
+
- `split_batches`: None
|
904 |
+
- `include_tokens_per_second`: False
|
905 |
+
- `include_num_input_tokens_seen`: False
|
906 |
+
- `neftune_noise_alpha`: None
|
907 |
+
- `optim_target_modules`: None
|
908 |
+
- `batch_sampler`: batch_sampler
|
909 |
+
- `multi_dataset_batch_sampler`: proportional
|
910 |
+
|
911 |
+
</details>
|
912 |
+
|
913 |
+
### Training Logs
|
914 |
+
| Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
|
915 |
+
|:------:|:----:|:-------------:|:-------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
|
916 |
+
| 0.2778 | 100 | 23.266 | 21.5517 | 0.8305 | 0.8355 | 0.8361 | 0.8157 | 0.8366 | - | - | - | - | - |
|
917 |
+
| 0.5556 | 200 | 21.8736 | 21.6172 | 0.8327 | 0.8388 | 0.8446 | 0.8206 | 0.8453 | - | - | - | - | - |
|
918 |
+
| 0.8333 | 300 | 21.6241 | 22.0565 | 0.8475 | 0.8538 | 0.8556 | 0.8345 | 0.8565 | - | - | - | - | - |
|
919 |
+
| 1.1111 | 400 | 21.075 | 23.6719 | 0.8545 | 0.8581 | 0.8634 | 0.8435 | 0.8644 | - | - | - | - | - |
|
920 |
+
| 1.3889 | 500 | 20.4122 | 22.5926 | 0.8592 | 0.8624 | 0.8650 | 0.8436 | 0.8656 | - | - | - | - | - |
|
921 |
+
| 1.6667 | 600 | 20.6586 | 22.5999 | 0.8514 | 0.8563 | 0.8595 | 0.8389 | 0.8597 | - | - | - | - | - |
|
922 |
+
| 1.9444 | 700 | 20.3262 | 22.2965 | 0.8582 | 0.8631 | 0.8666 | 0.8465 | 0.8667 | - | - | - | - | - |
|
923 |
+
| 2.2222 | 800 | 19.7948 | 23.1844 | 0.8621 | 0.8659 | 0.8688 | 0.8499 | 0.8694 | - | - | - | - | - |
|
924 |
+
| 2.5 | 900 | 19.2826 | 23.1351 | 0.8653 | 0.8687 | 0.8703 | 0.8547 | 0.8710 | - | - | - | - | - |
|
925 |
+
| 2.7778 | 1000 | 19.1063 | 23.7141 | 0.8641 | 0.8672 | 0.8691 | 0.8531 | 0.8695 | - | - | - | - | - |
|
926 |
+
| 3.0556 | 1100 | 19.4575 | 23.0055 | 0.8673 | 0.8702 | 0.8726 | 0.8574 | 0.8728 | - | - | - | - | - |
|
927 |
+
| 3.3333 | 1200 | 18.0727 | 24.9288 | 0.8659 | 0.8692 | 0.8715 | 0.8565 | 0.8722 | - | - | - | - | - |
|
928 |
+
| 3.6111 | 1300 | 18.1698 | 25.3114 | 0.8675 | 0.8701 | 0.8728 | 0.8576 | 0.8734 | - | - | - | - | - |
|
929 |
+
| 3.8889 | 1400 | 18.2321 | 25.3777 | 0.8688 | 0.8714 | 0.8741 | 0.8587 | 0.8748 | - | - | - | - | - |
|
930 |
+
| 4.0 | 1440 | - | - | - | - | - | - | - | 0.8350 | 0.8403 | 0.8468 | 0.8270 | 0.8470 |
|
931 |
+
|
932 |
+
|
933 |
+
### Environmental Impact
|
934 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
935 |
+
- **Energy Consumed**: 0.020 kWh
|
936 |
+
- **Carbon Emitted**: 0.008 kg of CO2
|
937 |
+
- **Hours Used**: 0.112 hours
|
938 |
+
|
939 |
+
### Training Hardware
|
940 |
+
- **On Cloud**: No
|
941 |
+
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
942 |
+
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
943 |
+
- **RAM Size**: 31.78 GB
|
944 |
+
|
945 |
+
### Framework Versions
|
946 |
+
- Python: 3.11.6
|
947 |
+
- Sentence Transformers: 3.0.0.dev0
|
948 |
+
- Transformers: 4.41.0.dev0
|
949 |
+
- PyTorch: 2.3.0+cu121
|
950 |
+
- Accelerate: 0.26.1
|
951 |
+
- Datasets: 2.18.0
|
952 |
+
- Tokenizers: 0.19.1
|
953 |
+
|
954 |
+
## Citation
|
955 |
+
|
956 |
+
### BibTeX
|
957 |
+
|
958 |
+
#### Sentence Transformers
|
959 |
+
```bibtex
|
960 |
+
@inproceedings{reimers-2019-sentence-bert,
|
961 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
962 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
963 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
964 |
+
month = "11",
|
965 |
+
year = "2019",
|
966 |
+
publisher = "Association for Computational Linguistics",
|
967 |
+
url = "https://arxiv.org/abs/1908.10084",
|
968 |
+
}
|
969 |
+
```
|
970 |
+
|
971 |
+
#### MatryoshkaLoss
|
972 |
+
```bibtex
|
973 |
+
@misc{kusupati2024matryoshka,
|
974 |
+
title={Matryoshka Representation Learning},
|
975 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
976 |
+
year={2024},
|
977 |
+
eprint={2205.13147},
|
978 |
+
archivePrefix={arXiv},
|
979 |
+
primaryClass={cs.LG}
|
980 |
+
}
|
981 |
+
```
|
982 |
+
|
983 |
+
#### CoSENTLoss
|
984 |
+
```bibtex
|
985 |
+
@online{kexuefm-8847,
|
986 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
987 |
+
author={Su Jianlin},
|
988 |
+
year={2022},
|
989 |
+
month={Jan},
|
990 |
+
url={https://kexue.fm/archives/8847},
|
991 |
+
}
|
992 |
+
```
|
993 |
+
|
994 |
+
<!--
|
995 |
+
## Glossary
|
996 |
+
|
997 |
+
*Clearly define terms in order to be accessible across audiences.*
|
998 |
+
-->
|
999 |
+
|
1000 |
+
<!--
|
1001 |
+
## Model Card Authors
|
1002 |
+
|
1003 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
1004 |
+
-->
|
1005 |
+
|
1006 |
+
<!--
|
1007 |
+
## Model Card Contact
|
1008 |
+
|
1009 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
1010 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "output\\matryoshka_sts_distilbert-base-uncased-2024-04-29_19-02-28\\final",
|
3 |
+
"activation": "gelu",
|
4 |
+
"architectures": [
|
5 |
+
"DistilBertModel"
|
6 |
+
],
|
7 |
+
"attention_dropout": 0.1,
|
8 |
+
"dim": 768,
|
9 |
+
"dropout": 0.1,
|
10 |
+
"hidden_dim": 3072,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"max_position_embeddings": 512,
|
13 |
+
"model_type": "distilbert",
|
14 |
+
"n_heads": 12,
|
15 |
+
"n_layers": 6,
|
16 |
+
"pad_token_id": 0,
|
17 |
+
"qa_dropout": 0.1,
|
18 |
+
"seq_classif_dropout": 0.2,
|
19 |
+
"sinusoidal_pos_embds": false,
|
20 |
+
"tie_weights_": true,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.41.0.dev0",
|
23 |
+
"vocab_size": 30522
|
24 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.0.dev0",
|
4 |
+
"transformers": "4.41.0.dev0",
|
5 |
+
"pytorch": "2.3.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89dcd360a661db13521661871db4c52fe51b8f82f0daa18818d0be98996d2704
|
3 |
+
size 265462608
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": true,
|
47 |
+
"mask_token": "[MASK]",
|
48 |
+
"max_length": 512,
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_to_multiple_of": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"pad_token_type_id": 0,
|
53 |
+
"padding_side": "right",
|
54 |
+
"sep_token": "[SEP]",
|
55 |
+
"stride": 0,
|
56 |
+
"strip_accents": null,
|
57 |
+
"tokenize_chinese_chars": true,
|
58 |
+
"tokenizer_class": "DistilBertTokenizer",
|
59 |
+
"truncation_side": "right",
|
60 |
+
"truncation_strategy": "longest_first",
|
61 |
+
"unk_token": "[UNK]"
|
62 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|