jina-clip-v1-st / transform.py
tomaarsen's picture
tomaarsen HF staff
Add new SentenceTransformer model.
c14f952 verified
import numbers
import random
import warnings
from dataclasses import asdict, dataclass
from typing import Any, Dict, List, Optional, Sequence, Tuple, Union
import torch
import torchvision.transforms.functional as F
from torchvision.transforms import (
CenterCrop,
ColorJitter,
Compose,
Grayscale,
InterpolationMode,
Normalize,
RandomResizedCrop,
Resize,
ToTensor,
)
from transformers.image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
OPENAI_DATASET_MEAN = tuple(OPENAI_CLIP_MEAN)
OPENAI_DATASET_STD = tuple(OPENAI_CLIP_STD)
@dataclass
class PreprocessCfg:
size: Union[int, Tuple[int, int]] = 224
mode: str = 'RGB'
mean: Tuple[float, ...] = OPENAI_DATASET_MEAN
std: Tuple[float, ...] = OPENAI_DATASET_STD
interpolation: str = 'bicubic'
resize_mode: str = 'shortest'
fill_color: int = 0
def __post_init__(self):
assert self.mode in ('RGB',)
@property
def num_channels(self):
return 3
@property
def input_size(self):
return (self.num_channels,) + (self.size, self.size)
_PREPROCESS_KEYS = set(asdict(PreprocessCfg()).keys())
def merge_preprocess_dict(
base: Union[PreprocessCfg, Dict],
overlay: Dict,
):
"""Merge overlay key-value pairs on top of base preprocess cfg or dict.
Input dicts are filtered based on PreprocessCfg fields.
"""
if isinstance(base, PreprocessCfg):
base_clean = asdict(base)
else:
base_clean = {k: v for k, v in base.items() if k in _PREPROCESS_KEYS}
if overlay:
overlay_clean = {
k: v for k, v in overlay.items() if k in _PREPROCESS_KEYS and v is not None
}
base_clean.update(overlay_clean)
return base_clean
def merge_preprocess_kwargs(base: Union[PreprocessCfg, Dict], **kwargs):
return merge_preprocess_dict(base, kwargs)
@dataclass
class AugmentationCfg:
scale: Tuple[float, float] = (0.9, 1.0)
ratio: Optional[Tuple[float, float]] = None
color_jitter: Optional[
Union[float, Tuple[float, float, float], Tuple[float, float, float, float]]
] = None
re_prob: Optional[float] = None
re_count: Optional[int] = None
use_timm: bool = False
# params for simclr_jitter_gray
color_jitter_prob: float = None
gray_scale_prob: float = None
def _setup_size(size, error_msg):
if isinstance(size, numbers.Number):
return int(size), int(size)
if isinstance(size, Sequence) and len(size) == 1:
return size[0], size[0]
if len(size) != 2:
raise ValueError(error_msg)
return size
class ResizeKeepRatio:
"""Resize and Keep Ratio
Copy & paste from `timm`
"""
def __init__(
self,
size,
longest=0.0,
interpolation=InterpolationMode.BICUBIC,
random_scale_prob=0.0,
random_scale_range=(0.85, 1.05),
random_aspect_prob=0.0,
random_aspect_range=(0.9, 1.11),
):
if isinstance(size, (list, tuple)):
self.size = tuple(size)
else:
self.size = (size, size)
self.interpolation = interpolation
self.longest = float(longest) # [0, 1] where 0 == shortest edge, 1 == longest
self.random_scale_prob = random_scale_prob
self.random_scale_range = random_scale_range
self.random_aspect_prob = random_aspect_prob
self.random_aspect_range = random_aspect_range
@staticmethod
def get_params(
img,
target_size,
longest,
random_scale_prob=0.0,
random_scale_range=(0.85, 1.05),
random_aspect_prob=0.0,
random_aspect_range=(0.9, 1.11),
):
"""Get parameters"""
source_size = img.size[::-1] # h, w
h, w = source_size
target_h, target_w = target_size
ratio_h = h / target_h
ratio_w = w / target_w
ratio = max(ratio_h, ratio_w) * longest + min(ratio_h, ratio_w) * (
1.0 - longest
)
if random_scale_prob > 0 and random.random() < random_scale_prob:
ratio_factor = random.uniform(random_scale_range[0], random_scale_range[1])
ratio_factor = (ratio_factor, ratio_factor)
else:
ratio_factor = (1.0, 1.0)
if random_aspect_prob > 0 and random.random() < random_aspect_prob:
aspect_factor = random.uniform(
random_aspect_range[0], random_aspect_range[1]
)
ratio_factor = (
ratio_factor[0] / aspect_factor,
ratio_factor[1] * aspect_factor,
)
size = [round(x * f / ratio) for x, f in zip(source_size, ratio_factor)]
return size
def __call__(self, img):
"""
Args:
img (PIL Image): Image to be cropped and resized.
Returns:
PIL Image: Resized, padded to at least target size, possibly
cropped to exactly target size
"""
size = self.get_params(
img,
self.size,
self.longest,
self.random_scale_prob,
self.random_scale_range,
self.random_aspect_prob,
self.random_aspect_range,
)
img = F.resize(img, size, self.interpolation)
return img
def __repr__(self):
format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
format_string += f', interpolation={self.interpolation})'
format_string += f', longest={self.longest:.3f})'
return format_string
def center_crop_or_pad(
img: torch.Tensor, output_size: List[int], fill=0
) -> torch.Tensor:
"""Center crops and/or pads the given image.
If the image is torch Tensor, it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading
dimensions. If image size is smaller than output size along any edge, image is
padded with 0 and then center cropped.
Args:
img (PIL Image or Tensor): Image to be cropped.
output_size (sequence or int): (height, width) of the crop box. If int or
sequence with single int, it is used for both directions.
fill (int, Tuple[int]): Padding color
Returns:
PIL Image or Tensor: Cropped image.
"""
if isinstance(output_size, numbers.Number):
output_size = (int(output_size), int(output_size))
elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
output_size = (output_size[0], output_size[0])
_, image_height, image_width = F.get_dimensions(img)
crop_height, crop_width = output_size
if crop_width > image_width or crop_height > image_height:
padding_ltrb = [
(crop_width - image_width) // 2 if crop_width > image_width else 0,
(crop_height - image_height) // 2 if crop_height > image_height else 0,
(crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
(crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
]
img = F.pad(img, padding_ltrb, fill=fill)
_, image_height, image_width = F.get_dimensions(img)
if crop_width == image_width and crop_height == image_height:
return img
crop_top = int(round((image_height - crop_height) / 2.0))
crop_left = int(round((image_width - crop_width) / 2.0))
return F.crop(img, crop_top, crop_left, crop_height, crop_width)
class CenterCropOrPad(torch.nn.Module):
"""Crops the given image at the center.
If the image is torch Tensor, it is expected
to have [..., H, W] shape, where ... means an arbitrary number of leading
dimensions. If image size is smaller than output size along any edge, image is
padded with 0 and then center cropped.
Args:
size (sequence or int): Desired output size of the crop. If size is an
int instead of sequence like (h, w), a square crop (size, size) is
made. If provided a sequence of length 1, it will be interpreted as
(size[0], size[0]).
"""
def __init__(self, size, fill=0):
super().__init__()
self.size = _setup_size(
size, error_msg='Please provide only two dimensions (h, w) for size.'
)
self.fill = fill
def forward(self, img):
"""
Args:
img (PIL Image or Tensor): Image to be cropped.
Returns:
PIL Image or Tensor: Cropped image.
"""
return center_crop_or_pad(img, self.size, fill=self.fill)
def __repr__(self) -> str:
return f'{self.__class__.__name__}(size={self.size})'
def _convert_to_rgb(image):
return image.convert('RGB')
class _ColorJitter(object):
"""
Apply Color Jitter to the PIL image with a specified probability.
"""
def __init__(self, brightness=0.0, contrast=0.0, saturation=0.0, hue=0.0, p=0.8):
assert 0.0 <= p <= 1.0
self.p = p
self.transf = ColorJitter(
brightness=brightness, contrast=contrast, saturation=saturation, hue=hue
)
def __call__(self, img):
if random.random() < self.p:
return self.transf(img)
else:
return img
class _GrayScale(object):
"""
Apply Gray Scale to the PIL image with a specified probability.
"""
def __init__(self, p=0.2):
assert 0.0 <= p <= 1.0
self.p = p
self.transf = Grayscale(num_output_channels=3)
def __call__(self, img):
if random.random() < self.p:
return self.transf(img)
else:
return img
def image_transform(
image_size: Union[int, Tuple[int, int]],
is_train: bool,
mean: Optional[Tuple[float, ...]] = None,
std: Optional[Tuple[float, ...]] = None,
resize_mode: Optional[str] = None,
interpolation: Optional[str] = None,
fill_color: int = 0,
aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
):
mean = mean or OPENAI_DATASET_MEAN
if not isinstance(mean, (list, tuple)):
mean = (mean,) * 3
std = std or OPENAI_DATASET_STD
if not isinstance(std, (list, tuple)):
std = (std,) * 3
interpolation = interpolation or 'bicubic'
assert interpolation in ['bicubic', 'bilinear', 'random']
# NOTE random is ignored for interpolation_mode, so defaults to BICUBIC for
# inference if set
interpolation_mode = (
InterpolationMode.BILINEAR
if interpolation == 'bilinear'
else InterpolationMode.BICUBIC
)
resize_mode = resize_mode or 'shortest'
assert resize_mode in ('shortest', 'longest', 'squash')
if isinstance(aug_cfg, dict):
aug_cfg = AugmentationCfg(**aug_cfg)
else:
aug_cfg = aug_cfg or AugmentationCfg()
normalize = Normalize(mean=mean, std=std)
if is_train:
aug_cfg_dict = {k: v for k, v in asdict(aug_cfg).items() if v is not None}
use_timm = aug_cfg_dict.pop('use_timm', False)
if use_timm:
from timm.data import create_transform # timm can still be optional
if isinstance(image_size, (tuple, list)):
assert len(image_size) >= 2
input_size = (3,) + image_size[-2:]
else:
input_size = (3, image_size, image_size)
aug_cfg_dict.setdefault('color_jitter', None) # disable by default
# drop extra non-timm items
aug_cfg_dict.pop('color_jitter_prob', None)
aug_cfg_dict.pop('gray_scale_prob', None)
train_transform = create_transform(
input_size=input_size,
is_training=True,
hflip=0.0,
mean=mean,
std=std,
re_mode='pixel',
interpolation=interpolation,
**aug_cfg_dict,
)
else:
train_transform = [
RandomResizedCrop(
image_size,
scale=aug_cfg_dict.pop('scale'),
interpolation=InterpolationMode.BICUBIC,
),
_convert_to_rgb,
]
if aug_cfg.color_jitter_prob:
assert (
aug_cfg.color_jitter is not None and len(aug_cfg.color_jitter) == 4
)
train_transform.extend(
[_ColorJitter(*aug_cfg.color_jitter, p=aug_cfg.color_jitter_prob)]
)
if aug_cfg.gray_scale_prob:
train_transform.extend([_GrayScale(aug_cfg.gray_scale_prob)])
train_transform.extend(
[
ToTensor(),
normalize,
]
)
train_transform = Compose(train_transform)
if aug_cfg_dict:
warnings.warn(
f'Unused augmentation cfg items, specify `use_timm` to use '
f'({list(aug_cfg_dict.keys())}).'
)
return train_transform
else:
if resize_mode == 'longest':
transforms = [
ResizeKeepRatio(
image_size, interpolation=interpolation_mode, longest=1
),
CenterCropOrPad(image_size, fill=fill_color),
]
elif resize_mode == 'squash':
if isinstance(image_size, int):
image_size = (image_size, image_size)
transforms = [
Resize(image_size, interpolation=interpolation_mode),
]
else:
assert resize_mode == 'shortest'
if not isinstance(image_size, (tuple, list)):
image_size = (image_size, image_size)
if image_size[0] == image_size[1]:
# simple case, use torchvision built-in Resize w/ shortest edge mode
# (scalar size arg)
transforms = [Resize(image_size[0], interpolation=interpolation_mode)]
else:
# resize shortest edge to matching target dim for non-square target
transforms = [ResizeKeepRatio(image_size)]
transforms += [CenterCrop(image_size)]
transforms.extend(
[
_convert_to_rgb,
ToTensor(),
normalize,
]
)
return Compose(transforms)
def image_transform_v2(
cfg: PreprocessCfg,
is_train: bool,
aug_cfg: Optional[Union[Dict[str, Any], AugmentationCfg]] = None,
):
return image_transform(
image_size=cfg.size,
is_train=is_train,
mean=cfg.mean,
std=cfg.std,
interpolation=cfg.interpolation,
resize_mode=cfg.resize_mode,
fill_color=cfg.fill_color,
aug_cfg=aug_cfg,
)