tomaarsen HF staff commited on
Commit
6803537
1 Parent(s): 0b615c9

Training in progress, step 30

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,637 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ library_name: sentence-transformers
6
+ tags:
7
+ - sentence-transformers
8
+ - sentence-similarity
9
+ - feature-extraction
10
+ - generated_with_trainer
11
+ - dataset_size:100K<n<1M
12
+ - loss:SoftmaxLoss
13
+ - loss:CosineSimilarityLoss
14
+ base_model: microsoft/mpnet-base
15
+ datasets:
16
+ - nyu-mll/multi_nli
17
+ - stanfordnlp/snli
18
+ - mteb/stsbenchmark-sts
19
+ metrics:
20
+ - pearson_cosine
21
+ - spearman_cosine
22
+ - pearson_manhattan
23
+ - spearman_manhattan
24
+ - pearson_euclidean
25
+ - spearman_euclidean
26
+ - pearson_dot
27
+ - spearman_dot
28
+ - pearson_max
29
+ - spearman_max
30
+ widget:
31
+ - source_sentence: A taxi SUV drives past an urban construction site, as a man walks
32
+ down the street in the other direction.
33
+ sentences:
34
+ - The woman is walking down the street with high heels.
35
+ - A man is reading documents in a binder.
36
+ - A man is chasing an SUV that is going in the same direction as him.
37
+ - source_sentence: Young man running towards a tennis court while another is waiting
38
+ in the other side of the net.
39
+ sentences:
40
+ - The person is cooking a hamburger.
41
+ - A young man is running to grab a tennis ball.
42
+ - A woman is dancing near a fire.
43
+ - source_sentence: An asian woman sitting outside an outdoor market stall.
44
+ sentences:
45
+ - There are three workers
46
+ - A woman sits outdoors.
47
+ - Five women sit at a table.
48
+ - source_sentence: All the same methods of analysis that are used with spoken languages
49
+ apply successfully to signed languages.
50
+ sentences:
51
+ - One idea that's been going around at least since the 80s is that you can distinguish
52
+ between Holds and Moves.
53
+ - You only need two-dimensional trigonometry if you know the distances to the two
54
+ stars and their angular separation.
55
+ - A woman driving a car is talking to the man seated beside her.
56
+ - source_sentence: Rouen is the ancient center of Normandy's thriving textile industry,
57
+ and the place of Joan of Arc's martyrdom ' a national symbol of resistance to
58
+ tyranny.
59
+ sentences:
60
+ - The islands are part of France now instead of just colonies.
61
+ - Joan of Arc sacrificed her life at Rouen, which became an enduring symbol of opposition
62
+ to tyranny.
63
+ - I don't know how cold it got last night.
64
+ pipeline_tag: sentence-similarity
65
+ co2_eq_emissions:
66
+ emissions: 6.543912203095872
67
+ energy_consumed: 0.01683529336894555
68
+ source: codecarbon
69
+ training_type: fine-tuning
70
+ on_cloud: false
71
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
72
+ ram_total_size: 31.777088165283203
73
+ hours_used: 0.067
74
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
75
+ model-index:
76
+ - name: SentenceTransformer based on microsoft/mpnet-base
77
+ results:
78
+ - task:
79
+ type: semantic-similarity
80
+ name: Semantic Similarity
81
+ dataset:
82
+ name: sts dev
83
+ type: sts-dev
84
+ metrics:
85
+ - type: pearson_cosine
86
+ value: 0.8625771940364872
87
+ name: Pearson Cosine
88
+ - type: spearman_cosine
89
+ value: 0.8606717551154308
90
+ name: Spearman Cosine
91
+ - type: pearson_manhattan
92
+ value: 0.8638967614504363
93
+ name: Pearson Manhattan
94
+ - type: spearman_manhattan
95
+ value: 0.8633946128639698
96
+ name: Spearman Manhattan
97
+ - type: pearson_euclidean
98
+ value: 0.8611337271100419
99
+ name: Pearson Euclidean
100
+ - type: spearman_euclidean
101
+ value: 0.8606717551154308
102
+ name: Spearman Euclidean
103
+ - type: pearson_dot
104
+ value: 0.862577202108671
105
+ name: Pearson Dot
106
+ - type: spearman_dot
107
+ value: 0.8606717551154308
108
+ name: Spearman Dot
109
+ - type: pearson_max
110
+ value: 0.8638967614504363
111
+ name: Pearson Max
112
+ - type: spearman_max
113
+ value: 0.8633946128639698
114
+ name: Spearman Max
115
+ - task:
116
+ type: semantic-similarity
117
+ name: Semantic Similarity
118
+ dataset:
119
+ name: sts test
120
+ type: sts-test
121
+ metrics:
122
+ - type: pearson_cosine
123
+ value: 0.8121966861722953
124
+ name: Pearson Cosine
125
+ - type: spearman_cosine
126
+ value: 0.8064524624275264
127
+ name: Spearman Cosine
128
+ - type: pearson_manhattan
129
+ value: 0.8164566762295066
130
+ name: Pearson Manhattan
131
+ - type: spearman_manhattan
132
+ value: 0.8087376581901532
133
+ name: Spearman Manhattan
134
+ - type: pearson_euclidean
135
+ value: 0.8146700964672056
136
+ name: Pearson Euclidean
137
+ - type: spearman_euclidean
138
+ value: 0.8064524624275264
139
+ name: Spearman Euclidean
140
+ - type: pearson_dot
141
+ value: 0.8121966895185604
142
+ name: Pearson Dot
143
+ - type: spearman_dot
144
+ value: 0.8064524624275264
145
+ name: Spearman Dot
146
+ - type: pearson_max
147
+ value: 0.8164566762295066
148
+ name: Pearson Max
149
+ - type: spearman_max
150
+ value: 0.8087376581901532
151
+ name: Spearman Max
152
+ ---
153
+
154
+ # SentenceTransformer based on microsoft/mpnet-base
155
+
156
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [multi_nli](https://huggingface.co/datasets/nyu-mll/multi_nli), [snli](https://huggingface.co/datasets/stanfordnlp/snli) and [stsb](https://huggingface.co/datasets/mteb/stsbenchmark-sts) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
157
+
158
+ ## Model Details
159
+
160
+ ### Model Description
161
+ - **Model Type:** Sentence Transformer
162
+ - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
163
+ - **Maximum Sequence Length:** 384 tokens
164
+ - **Output Dimensionality:** 768 tokens
165
+ - **Similarity Function:** Dot Product
166
+ - **Training Datasets:**
167
+ - [multi_nli](https://huggingface.co/datasets/nyu-mll/multi_nli)
168
+ - [snli](https://huggingface.co/datasets/stanfordnlp/snli)
169
+ - [stsb](https://huggingface.co/datasets/mteb/stsbenchmark-sts)
170
+ - **Language:** en
171
+ - **License:** apache-2.0
172
+
173
+ ### Model Sources
174
+
175
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
176
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
177
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
178
+
179
+ ### Full Model Architecture
180
+
181
+ ```
182
+ SentenceTransformer(
183
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
184
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
185
+ (2): Normalize()
186
+ )
187
+ ```
188
+
189
+ ## Usage
190
+
191
+ ### Direct Usage (Sentence Transformers)
192
+
193
+ First install the Sentence Transformers library:
194
+
195
+ ```bash
196
+ pip install -U sentence-transformers
197
+ ```
198
+
199
+ Then you can load this model and run inference.
200
+ ```python
201
+ from sentence_transformers import SentenceTransformer
202
+
203
+ # Download from the 🤗 Hub
204
+ model = SentenceTransformer("tomaarsen/mpnet-base-allnli")
205
+ # Run inference
206
+ sentences = [
207
+ "Rouen is the ancient center of Normandy's thriving textile industry, and the place of Joan of Arc's martyrdom ' a national symbol of resistance to tyranny.",
208
+ 'Joan of Arc sacrificed her life at Rouen, which became an enduring symbol of opposition to tyranny.',
209
+ 'The islands are part of France now instead of just colonies.',
210
+ ]
211
+ embeddings = model.encode(sentences)
212
+ print(embeddings.shape)
213
+ # [3, 768]
214
+
215
+ # Get the similarity scores for the embeddings
216
+ similarities = model.similarity(embeddings, embeddings)
217
+ print(similarities.shape)
218
+ # [3, 3]
219
+ ```
220
+
221
+ <!--
222
+ ### Direct Usage (Transformers)
223
+
224
+ <details><summary>Click to see the direct usage in Transformers</summary>
225
+
226
+ </details>
227
+ -->
228
+
229
+ <!--
230
+ ### Downstream Usage (Sentence Transformers)
231
+
232
+ You can finetune this model on your own dataset.
233
+
234
+ <details><summary>Click to expand</summary>
235
+
236
+ </details>
237
+ -->
238
+
239
+ <!--
240
+ ### Out-of-Scope Use
241
+
242
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
243
+ -->
244
+
245
+ ## Evaluation
246
+
247
+ ### Metrics
248
+
249
+ #### Semantic Similarity
250
+ * Dataset: `sts-dev`
251
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
252
+
253
+ | Metric | Value |
254
+ |:-------------------|:-----------|
255
+ | pearson_cosine | 0.8626 |
256
+ | spearman_cosine | 0.8607 |
257
+ | pearson_manhattan | 0.8639 |
258
+ | spearman_manhattan | 0.8634 |
259
+ | pearson_euclidean | 0.8611 |
260
+ | spearman_euclidean | 0.8607 |
261
+ | pearson_dot | 0.8626 |
262
+ | **spearman_dot** | **0.8607** |
263
+ | pearson_max | 0.8639 |
264
+ | spearman_max | 0.8634 |
265
+
266
+ #### Semantic Similarity
267
+ * Dataset: `sts-test`
268
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
269
+
270
+ | Metric | Value |
271
+ |:--------------------|:-----------|
272
+ | pearson_cosine | 0.8122 |
273
+ | **spearman_cosine** | **0.8065** |
274
+ | pearson_manhattan | 0.8165 |
275
+ | spearman_manhattan | 0.8087 |
276
+ | pearson_euclidean | 0.8147 |
277
+ | spearman_euclidean | 0.8065 |
278
+ | pearson_dot | 0.8122 |
279
+ | spearman_dot | 0.8065 |
280
+ | pearson_max | 0.8165 |
281
+ | spearman_max | 0.8087 |
282
+
283
+ <!--
284
+ ## Bias, Risks and Limitations
285
+
286
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
287
+ -->
288
+
289
+ <!--
290
+ ### Recommendations
291
+
292
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
293
+ -->
294
+
295
+ ## Training Details
296
+
297
+ ### Training Datasets
298
+
299
+ #### multi_nli
300
+
301
+ * Dataset: [multi_nli](https://huggingface.co/datasets/nyu-mll/multi_nli) at [da70db2](https://huggingface.co/datasets/nyu-mll/multi_nli/tree/da70db2af9d09693783c3320c4249840212ee221)
302
+ * Size: 392,702 training samples
303
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
304
+ * Approximate statistics based on the first 1000 samples:
305
+ | | premise | hypothesis | label |
306
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
307
+ | type | string | string | int |
308
+ | details | <ul><li>min: 4 tokens</li><li>mean: 26.95 tokens</li><li>max: 189 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.11 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>0: ~34.30%</li><li>1: ~28.20%</li><li>2: ~37.50%</li></ul> |
309
+ * Samples:
310
+ | premise | hypothesis | label |
311
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------|
312
+ | <code>Conceptually cream skimming has two basic dimensions - product and geography.</code> | <code>Product and geography are what make cream skimming work. </code> | <code>1</code> |
313
+ | <code>you know during the season and i guess at at your level uh you lose them to the next level if if they decide to recall the the parent team the Braves decide to call to recall a guy from triple A then a double A guy goes up to replace him and a single A guy goes up to replace him</code> | <code>You lose the things to the following level if the people recall.</code> | <code>0</code> |
314
+ | <code>One of our number will carry out your instructions minutely.</code> | <code>A member of my team will execute your orders with immense precision.</code> | <code>0</code> |
315
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
316
+
317
+ #### snli
318
+
319
+ * Dataset: [snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
320
+ * Size: 549,367 training samples
321
+ * Columns: <code>snli_premise</code>, <code>hypothesis</code>, and <code>label</code>
322
+ * Approximate statistics based on the first 1000 samples:
323
+ | | snli_premise | hypothesis | label |
324
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------|
325
+ | type | string | string | int |
326
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.38 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.7 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>0: ~33.40%</li><li>1: ~33.30%</li><li>2: ~33.30%</li></ul> |
327
+ * Samples:
328
+ | snli_premise | hypothesis | label |
329
+ |:--------------------------------------------------------------------|:---------------------------------------------------------------|:---------------|
330
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is training his horse for a competition.</code> | <code>1</code> |
331
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is at a diner, ordering an omelette.</code> | <code>2</code> |
332
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> |
333
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
334
+
335
+ #### stsb
336
+
337
+ * Dataset: [stsb](https://huggingface.co/datasets/mteb/stsbenchmark-sts) at [8913289](https://huggingface.co/datasets/mteb/stsbenchmark-sts/tree/8913289635987208e6e7c72789e4be2fe94b6abd)
338
+ * Size: 5,749 training samples
339
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
340
+ * Approximate statistics based on the first 1000 samples:
341
+ | | sentence1 | sentence2 | label |
342
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
343
+ | type | string | string | float |
344
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
345
+ * Samples:
346
+ | sentence1 | sentence2 | label |
347
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
348
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
349
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
350
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
351
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
352
+ ```json
353
+ {
354
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
355
+ }
356
+ ```
357
+
358
+ ### Evaluation Datasets
359
+
360
+ #### multi_nli
361
+
362
+ * Dataset: [multi_nli](https://huggingface.co/datasets/nyu-mll/multi_nli) at [da70db2](https://huggingface.co/datasets/nyu-mll/multi_nli/tree/da70db2af9d09693783c3320c4249840212ee221)
363
+ * Size: 100 evaluation samples
364
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
365
+ * Approximate statistics based on the first 1000 samples:
366
+ | | premise | hypothesis | label |
367
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
368
+ | type | string | string | int |
369
+ | details | <ul><li>min: 5 tokens</li><li>mean: 27.67 tokens</li><li>max: 138 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.48 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>0: ~35.00%</li><li>1: ~31.00%</li><li>2: ~34.00%</li></ul> |
370
+ * Samples:
371
+ | premise | hypothesis | label |
372
+ |:---------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------|
373
+ | <code>The new rights are nice enough</code> | <code>Everyone really likes the newest benefits </code> | <code>1</code> |
374
+ | <code>This site includes a list of all award winners and a searchable database of Government Executive articles.</code> | <code>The Government Executive articles housed on the website are not able to be searched.</code> | <code>2</code> |
375
+ | <code>uh i don't know i i have mixed emotions about him uh sometimes i like him but at the same times i love to see somebody beat him</code> | <code>I like him for the most part, but would still enjoy seeing someone beat him.</code> | <code>0</code> |
376
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
377
+
378
+ #### snli
379
+
380
+ * Dataset: [snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
381
+ * Size: 9,842 evaluation samples
382
+ * Columns: <code>snli_premise</code>, <code>hypothesis</code>, and <code>label</code>
383
+ * Approximate statistics based on the first 1000 samples:
384
+ | | snli_premise | hypothesis | label |
385
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
386
+ | type | string | string | int |
387
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.44 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.57 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>0: ~33.10%</li><li>1: ~33.30%</li><li>2: ~33.60%</li></ul> |
388
+ * Samples:
389
+ | snli_premise | hypothesis | label |
390
+ |:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:---------------|
391
+ | <code>Two women are embracing while holding to go packages.</code> | <code>The sisters are hugging goodbye while holding to go packages after just eating lunch.</code> | <code>1</code> |
392
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>0</code> |
393
+ | <code>Two women are embracing while holding to go packages.</code> | <code>The men are fighting outside a deli.</code> | <code>2</code> |
394
+ * Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
395
+
396
+ #### stsb
397
+
398
+ * Dataset: [stsb](https://huggingface.co/datasets/mteb/stsbenchmark-sts) at [8913289](https://huggingface.co/datasets/mteb/stsbenchmark-sts/tree/8913289635987208e6e7c72789e4be2fe94b6abd)
399
+ * Size: 1,500 evaluation samples
400
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
401
+ * Approximate statistics based on the first 1000 samples:
402
+ | | sentence1 | sentence2 | label |
403
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
404
+ | type | string | string | float |
405
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
406
+ * Samples:
407
+ | sentence1 | sentence2 | label |
408
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
409
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
410
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
411
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
412
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
413
+ ```json
414
+ {
415
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
416
+ }
417
+ ```
418
+
419
+ ### Training Hyperparameters
420
+ #### Non-Default Hyperparameters
421
+
422
+ - `eval_strategy`: steps
423
+ - `per_device_train_batch_size`: 64
424
+ - `per_device_eval_batch_size`: 64
425
+ - `learning_rate`: 2e-05
426
+ - `num_train_epochs`: 1
427
+ - `warmup_ratio`: 0.1
428
+ - `seed`: 33
429
+ - `bf16`: True
430
+ - `load_best_model_at_end`: True
431
+ - `push_to_hub`: True
432
+ - `hub_model_id`: tomaarsen/mpnet-base-allnli
433
+ - `hub_private_repo`: True
434
+ - `multi_dataset_batch_sampler`: round_robin
435
+
436
+ #### All Hyperparameters
437
+ <details><summary>Click to expand</summary>
438
+
439
+ - `overwrite_output_dir`: False
440
+ - `do_predict`: False
441
+ - `eval_strategy`: steps
442
+ - `prediction_loss_only`: True
443
+ - `per_device_train_batch_size`: 64
444
+ - `per_device_eval_batch_size`: 64
445
+ - `per_gpu_train_batch_size`: None
446
+ - `per_gpu_eval_batch_size`: None
447
+ - `gradient_accumulation_steps`: 1
448
+ - `eval_accumulation_steps`: None
449
+ - `learning_rate`: 2e-05
450
+ - `weight_decay`: 0.0
451
+ - `adam_beta1`: 0.9
452
+ - `adam_beta2`: 0.999
453
+ - `adam_epsilon`: 1e-08
454
+ - `max_grad_norm`: 1.0
455
+ - `num_train_epochs`: 1
456
+ - `max_steps`: -1
457
+ - `lr_scheduler_type`: linear
458
+ - `lr_scheduler_kwargs`: {}
459
+ - `warmup_ratio`: 0.1
460
+ - `warmup_steps`: 0
461
+ - `log_level`: passive
462
+ - `log_level_replica`: warning
463
+ - `log_on_each_node`: True
464
+ - `logging_nan_inf_filter`: True
465
+ - `save_safetensors`: True
466
+ - `save_on_each_node`: False
467
+ - `save_only_model`: False
468
+ - `restore_callback_states_from_checkpoint`: False
469
+ - `no_cuda`: False
470
+ - `use_cpu`: False
471
+ - `use_mps_device`: False
472
+ - `seed`: 33
473
+ - `data_seed`: None
474
+ - `jit_mode_eval`: False
475
+ - `use_ipex`: False
476
+ - `bf16`: True
477
+ - `fp16`: False
478
+ - `fp16_opt_level`: O1
479
+ - `half_precision_backend`: auto
480
+ - `bf16_full_eval`: False
481
+ - `fp16_full_eval`: False
482
+ - `tf32`: None
483
+ - `local_rank`: 0
484
+ - `ddp_backend`: None
485
+ - `tpu_num_cores`: None
486
+ - `tpu_metrics_debug`: False
487
+ - `debug`: []
488
+ - `dataloader_drop_last`: False
489
+ - `dataloader_num_workers`: 0
490
+ - `dataloader_prefetch_factor`: None
491
+ - `past_index`: -1
492
+ - `disable_tqdm`: False
493
+ - `remove_unused_columns`: True
494
+ - `label_names`: None
495
+ - `load_best_model_at_end`: True
496
+ - `ignore_data_skip`: False
497
+ - `fsdp`: []
498
+ - `fsdp_min_num_params`: 0
499
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
500
+ - `fsdp_transformer_layer_cls_to_wrap`: None
501
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
502
+ - `deepspeed`: None
503
+ - `label_smoothing_factor`: 0.0
504
+ - `optim`: adamw_torch
505
+ - `optim_args`: None
506
+ - `adafactor`: False
507
+ - `group_by_length`: False
508
+ - `length_column_name`: length
509
+ - `ddp_find_unused_parameters`: None
510
+ - `ddp_bucket_cap_mb`: None
511
+ - `ddp_broadcast_buffers`: False
512
+ - `dataloader_pin_memory`: True
513
+ - `dataloader_persistent_workers`: False
514
+ - `skip_memory_metrics`: True
515
+ - `use_legacy_prediction_loop`: False
516
+ - `push_to_hub`: True
517
+ - `resume_from_checkpoint`: None
518
+ - `hub_model_id`: tomaarsen/mpnet-base-allnli
519
+ - `hub_strategy`: every_save
520
+ - `hub_private_repo`: True
521
+ - `hub_always_push`: False
522
+ - `gradient_checkpointing`: False
523
+ - `gradient_checkpointing_kwargs`: None
524
+ - `include_inputs_for_metrics`: False
525
+ - `eval_do_concat_batches`: True
526
+ - `fp16_backend`: auto
527
+ - `push_to_hub_model_id`: None
528
+ - `push_to_hub_organization`: None
529
+ - `mp_parameters`:
530
+ - `auto_find_batch_size`: False
531
+ - `full_determinism`: False
532
+ - `torchdynamo`: None
533
+ - `ray_scope`: last
534
+ - `ddp_timeout`: 1800
535
+ - `torch_compile`: False
536
+ - `torch_compile_backend`: None
537
+ - `torch_compile_mode`: None
538
+ - `dispatch_batches`: None
539
+ - `split_batches`: None
540
+ - `include_tokens_per_second`: False
541
+ - `include_num_input_tokens_seen`: False
542
+ - `neftune_noise_alpha`: None
543
+ - `optim_target_modules`: None
544
+ - `batch_eval_metrics`: False
545
+ - `batch_sampler`: batch_sampler
546
+ - `multi_dataset_batch_sampler`: round_robin
547
+
548
+ </details>
549
+
550
+ ### Training Logs
551
+ | Epoch | Step | Training Loss | stsb loss | snli loss | multi nli loss | sts-dev_spearman_dot | sts-test_spearman_cosine |
552
+ |:----------:|:-------:|:-------------:|:----------:|:----------:|:--------------:|:--------------------:|:------------------------:|
553
+ | 0.0370 | 10 | 0.8336 | - | - | - | - | - |
554
+ | 0.0741 | 20 | 0.8257 | - | - | - | - | - |
555
+ | 0.1111 | 30 | 0.6998 | 0.0736 | 1.0978 | 1.0961 | 0.6791 | - |
556
+ | 0.1481 | 40 | 0.7878 | - | - | - | - | - |
557
+ | 0.1852 | 50 | 0.7868 | - | - | - | - | - |
558
+ | 0.2222 | 60 | 0.6761 | 0.0528 | 1.0958 | 1.0963 | 0.8035 | - |
559
+ | 0.2593 | 70 | 0.7804 | - | - | - | - | - |
560
+ | 0.2963 | 80 | 0.7789 | - | - | - | - | - |
561
+ | 0.3333 | 90 | 0.6756 | 0.0390 | 1.0940 | 1.0962 | 0.8341 | - |
562
+ | 0.3704 | 100 | 0.7811 | - | - | - | - | - |
563
+ | 0.4074 | 110 | 0.775 | - | - | - | - | - |
564
+ | 0.4444 | 120 | 0.6721 | 0.0351 | 1.0932 | 1.0981 | 0.8413 | - |
565
+ | 0.4815 | 130 | 0.7794 | - | - | - | - | - |
566
+ | 0.5185 | 140 | 0.7764 | - | - | - | - | - |
567
+ | 0.5556 | 150 | 0.6705 | 0.0343 | 1.0906 | 1.0950 | 0.8485 | - |
568
+ | 0.5926 | 160 | 0.776 | - | - | - | - | - |
569
+ | 0.6296 | 170 | 0.7742 | - | - | - | - | - |
570
+ | 0.6667 | 180 | 0.6643 | 0.0326 | 1.0887 | 1.0927 | 0.8547 | - |
571
+ | 0.7037 | 190 | 0.7732 | - | - | - | - | - |
572
+ | 0.7407 | 200 | 0.7733 | - | - | - | - | - |
573
+ | 0.7778 | 210 | 0.6676 | 0.0318 | 1.0867 | 1.0912 | 0.8591 | - |
574
+ | 0.8148 | 220 | 0.7706 | - | - | - | - | - |
575
+ | 0.8519 | 230 | 0.7716 | - | - | - | - | - |
576
+ | **0.8889** | **240** | **0.6633** | **0.0302** | **1.0855** | **1.0889** | **0.8607** | **-** |
577
+ | 0.9259 | 250 | 0.7711 | - | - | - | - | - |
578
+ | 0.9630 | 260 | 0.7716 | - | - | - | - | - |
579
+ | 1.0 | 270 | 0.6644 | 0.0316 | 1.0852 | 1.0890 | 0.8607 | 0.8065 |
580
+
581
+ * The bold row denotes the saved checkpoint.
582
+
583
+ ### Environmental Impact
584
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
585
+ - **Energy Consumed**: 0.017 kWh
586
+ - **Carbon Emitted**: 0.007 kg of CO2
587
+ - **Hours Used**: 0.067 hours
588
+
589
+ ### Training Hardware
590
+ - **On Cloud**: No
591
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
592
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
593
+ - **RAM Size**: 31.78 GB
594
+
595
+ ### Framework Versions
596
+ - Python: 3.11.6
597
+ - Sentence Transformers: 3.1.0.dev0
598
+ - Transformers: 4.41.2
599
+ - PyTorch: 2.3.0+cu121
600
+ - Accelerate: 0.30.1
601
+ - Datasets: 2.19.1
602
+ - Tokenizers: 0.19.1
603
+
604
+ ## Citation
605
+
606
+ ### BibTeX
607
+
608
+ #### Sentence Transformers and SoftmaxLoss
609
+ ```bibtex
610
+ @inproceedings{reimers-2019-sentence-bert,
611
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
612
+ author = "Reimers, Nils and Gurevych, Iryna",
613
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
614
+ month = "11",
615
+ year = "2019",
616
+ publisher = "Association for Computational Linguistics",
617
+ url = "https://arxiv.org/abs/1908.10084",
618
+ }
619
+ ```
620
+
621
+ <!--
622
+ ## Glossary
623
+
624
+ *Clearly define terms in order to be accessible across audiences.*
625
+ -->
626
+
627
+ <!--
628
+ ## Model Card Authors
629
+
630
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
631
+ -->
632
+
633
+ <!--
634
+ ## Model Card Contact
635
+
636
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
637
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mpnet-base",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0.dev0",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "dot"
10
+ }
emissions.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ timestamp,project_name,run_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2024-06-05T13:25:31,codecarbon,8f78a832-cb8b-4255-90f9-87291ab5a2c5,203.90490198135376,0.0066664767107362,3.269404828406667e-05,42.5,262.78315247135714,11.9164080619812,0.0024072106483909,0.0140688801439834,0.0006745199858985,0.0171506107782729,The Netherlands,NLD,utrecht,,,Windows-10-10.0.22631-SP0,3.11.6,2.3.4,24,13th Gen Intel(R) Core(TM) i7-13700K,1,1 x NVIDIA GeForce RTX 3090,5.0582,52.0756,31.777088165283203,machine,N,1.0
3
+ 2024-06-05T14:02:28,codecarbon,c19a4b76-5dda-443e-a1eb-73550f818127,200.78387594223022,0.006543912203095872,3.259182129235663e-05,42.5,248.66806443178965,11.916408061981201,0.002370365202095774,0.013800701318329445,0.0006642268485203281,0.01683529336894555,The Netherlands,NLD,utrecht,,,Windows-10-10.0.22631-SP0,3.11.6,2.3.4,24,13th Gen Intel(R) Core(TM) i7-13700K,1,1 x NVIDIA GeForce RTX 3090,5.0582,52.0756,31.777088165283203,machine,N,1.0
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a6c0ac72ffdd503c8ece4111263bf928521874978a5648a81f0ac725c47eb17
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
runs/Jun05_13-21-55_Tom/events.out.tfevents.1717586522.Tom.11064.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17b3f0ff9d4380d90fba6e4be100eceedadc23e5976d47f6be9b297671ab1427
3
+ size 24190
runs/Jun05_13-58-55_Tom/events.out.tfevents.1717588742.Tom.10892.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48a821f3e70c350339d6208d22f32d9df5640ff90dae6a51ab863190590d472a
3
+ size 24190
runs/Jun05_14-24-25_Tom/events.out.tfevents.1717590271.Tom.22032.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70b8273416c93834129344714b7a0124744f27ef49d8a44501b38e7d1e77cfac
3
+ size 6419
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "model_max_length": 384,
59
+ "pad_token": "<pad>",
60
+ "sep_token": "</s>",
61
+ "strip_accents": null,
62
+ "tokenize_chinese_chars": true,
63
+ "tokenizer_class": "MPNetTokenizer",
64
+ "unk_token": "[UNK]"
65
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aa5f70e62daa8cfaaf203eb6f4ee8d4968199e089a94ed1ed8a30a5a3693181c
3
+ size 5432
vocab.txt ADDED
The diff for this file is too large to render. See raw diff