File size: 2,600 Bytes
0d63046
 
4fe3f1d
 
0d63046
 
 
 
 
4fe3f1d
 
 
 
0d63046
 
 
4fe3f1d
 
 
0d63046
 
4fe3f1d
0d63046
4fe3f1d
 
 
 
 
0d63046
 
 
 
 
 
 
 
 
4fe3f1d
 
 
0d63046
4fe3f1d
0d63046
 
4fe3f1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d63046
4fe3f1d
0d63046
 
 
4fe3f1d
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from pathlib import Path
import shutil
from datasets import load_dataset
from transformers import TrainingArguments
from span_marker import SpanMarkerModel, Trainer, SpanMarkerModelCardData

import os

os.environ["CODECARBON_LOG_LEVEL"] = "error"


def main() -> None:
    # Load the dataset, ensure "tokens" and "ner_tags" columns, and get a list of labels
    dataset_name = "Acronym Identification"
    dataset_id = "acronym_identification"
    dataset = load_dataset(dataset_id).rename_column("labels", "ner_tags")
    labels = dataset["train"].features["ner_tags"].feature.names

    # Initialize a SpanMarker model using a pretrained BERT-style encoder
    encoder_id = "bert-base-cased"
    model_id = "tomaarsen/span-marker-bert-base-acronyms"
    model = SpanMarkerModel.from_pretrained(
        encoder_id,
        labels=labels,
        # SpanMarker hyperparameters:
        model_max_length=256,
        marker_max_length=128,
        entity_max_length=8,
        # Model card variables
        model_card_data=SpanMarkerModelCardData(
            model_id=model_id,
            encoder_id=encoder_id,
            dataset_name=dataset_name,
            dataset_id=dataset_id,
            license="apache-2.0",
            language="en",
        ),
    )

    # Prepare the 🤗 transformers training arguments
    output_dir = Path("models") / model_id
    args = TrainingArguments(
        output_dir=output_dir,
        run_name=model_id,
        # Training Hyperparameters:
        learning_rate=5e-5,
        per_device_train_batch_size=32,
        per_device_eval_batch_size=32,
        num_train_epochs=2,
        weight_decay=0.01,
        warmup_ratio=0.1,
        bf16=True,  # Replace `bf16` with `fp16` if your hardware can't use bf16.
        # Other Training parameters
        logging_first_step=True,
        logging_steps=50,
        evaluation_strategy="steps",
        save_strategy="steps",
        eval_steps=200,
        save_total_limit=2,
        dataloader_num_workers=2,
    )

    # Initialize the trainer using our model, training args & dataset, and train
    trainer = Trainer(
        model=model,
        args=args,
        train_dataset=dataset["train"],
        eval_dataset=dataset["validation"],
    )
    trainer.train()

    # Compute & save the metrics on the test set
    metrics = trainer.evaluate(metric_key_prefix="validation")
    trainer.save_metrics("validation", metrics)

    trainer.save_model(output_dir / "checkpoint-final")
    shutil.copy2(__file__, output_dir / "checkpoint-final" / "train.py")


if __name__ == "__main__":
    main()