File size: 7,321 Bytes
111bd4a
0a941ef
 
111bd4a
 
 
 
 
 
 
0a941ef
 
111bd4a
 
 
 
0a941ef
 
44f0783
 
0a941ef
44f0783
 
0a941ef
44f0783
 
 
 
 
 
 
 
111bd4a
0a941ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111bd4a
 
0a941ef
111bd4a
6b00766
111bd4a
 
 
 
 
 
0a941ef
111bd4a
 
0a941ef
 
 
111bd4a
 
 
 
 
 
0a941ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111bd4a
 
 
 
 
 
 
 
0a941ef
111bd4a
44f0783
111bd4a
 
 
 
 
 
 
 
 
 
 
0a941ef
111bd4a
 
 
 
 
 
 
 
 
 
 
0a941ef
111bd4a
 
 
 
 
0a941ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111bd4a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
---
language: en
license: other
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- tner/bionlp2004
metrics:
- precision
- recall
- f1
widget:
- text: Coexpression of HMG I/Y and Oct-2 in cell lines lacking Oct-2 results in high
    levels of HLA-DRA gene expression, and in vitro DNA-binding studies reveal that
    HMG I/Y stimulates Oct-2A binding to the HLA-DRA promoter.
- text: In erythroid cells most of the transcription activity was contained in a 150
    bp promoter fragment with binding sites for transcription factors AP2, Sp1 and
    the erythroid-specific GATA-1.
- text: 'Synergy between signal transduction pathways is obligatory for expression
    of c-fos in B and T cell lines: implication for c-fos control via surface immunoglobulin
    and T cell antigen receptors.'
- text: CIITA mRNA is normally inducible by IFN-gamma in class II non-inducible,
    RB-defective lines, and in one line, re-expression of RB has no effect on CIITA
    mRNA induction levels.
- text: As we reported previously, MNDA mRNA level in adherent monocytes is elevated
    by IFN-alpha; in this study, we further assessed MNDA expression in in vitro
    monocyte-derived macrophages.
pipeline_tag: token-classification
co2_eq_emissions:
  emissions: 45.104
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  gpu_model: 1 x NVIDIA GeForce RTX 3090
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
  ram_total_size: 31.777088165283203
  hours_used: 0.296
model-index:
- name: SpanMarker with bert-base-uncased on BioNLP2004
  results:
  - task:
      type: token-classification
      name: Named Entity Recognition
    dataset:
      name: BioNLP2004
      type: tner/bionlp2004
      split: test
    metrics:
    - type: f1
      value: 0.7620637836032726
      name: F1
    - type: precision
      value: 0.7289958470876371
      name: Precision
    - type: recall
      value: 0.7982742537313433
      name: Recall
---

# SpanMarker with bert-base-uncased on BioNLP2004

This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [BioNLP2004](https://huggingface.co/datasets/tner/bionlp2004) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-uncased](https://huggingface.co/models/bert-base-uncased) as the underlying encoder. See [train.py](train.py) for the training script.

## Model Details

### Model Description

- **Model Type:** SpanMarker
- **Encoder:** [bert-base-uncased](https://huggingface.co/models/bert-base-uncased)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [BioNLP2004](https://huggingface.co/datasets/tner/bionlp2004)
- **Language:** en
- **License:** other

### Model Sources

- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)

### Model Labels
| Label     | Examples                                                                                         |
|:----------|:-------------------------------------------------------------------------------------------------|
| DNA       | "immunoglobulin heavy-chain enhancer", "enhancer", "immunoglobulin heavy-chain ( IgH ) enhancer" |
| RNA       | "GATA-1 mRNA", "c-myb mRNA", "antisense myb RNA"                                                 |
| cell_line | "monocytic U937 cells", "TNF-treated HUVECs", "HUVECs"                                           |
| cell_type | "B cells", "non-B cells", "human red blood cells"                                                |
| protein   | "ICAM-1", "VCAM-1", "NADPH oxidase"                                                              |

## Evaluation

### Metrics
| Label     | Precision | Recall | F1     |
|:----------|:----------|:-------|:-------|
| **all**   | 0.7290    | 0.7983 | 0.7621 |
| DNA       | 0.7174    | 0.7505 | 0.7336 |
| RNA       | 0.6977    | 0.7692 | 0.7317 |
| cell_line | 0.5831    | 0.7020 | 0.6370 |
| cell_type | 0.8222    | 0.7381 | 0.7779 |
| protein   | 0.7196    | 0.8407 | 0.7755 |

## Uses

### Direct Use

```python
from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-uncased-bionlp")
# Run inference
entities = model.predict("In erythroid cells most of the transcription activity was contained in a 150 bp promoter fragment with binding sites for transcription factors AP2, Sp1 and the erythroid-specific GATA-1.")
```

### Downstream Use
You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

```python
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-base-uncased-bionlp")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("tomaarsen/span-marker-bert-base-uncased-bionlp-finetuned")
```
</details>

## Training Details

### Training Set Metrics
| Training set          | Min | Median  | Max |
|:----------------------|:----|:--------|:----|
| Sentence length       | 2   | 26.5790 | 166 |
| Entities per sentence | 0   | 2.7528  | 23  |

### Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3

### Training Results
| Epoch  | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.4505 | 300  | 0.0210          | 0.7497               | 0.7659            | 0.7577        | 0.9254              |
| 0.9009 | 600  | 0.0162          | 0.8048               | 0.8217            | 0.8131        | 0.9432              |
| 1.3514 | 900  | 0.0154          | 0.8126               | 0.8249            | 0.8187        | 0.9434              |
| 1.8018 | 1200 | 0.0149          | 0.8148               | 0.8451            | 0.8296        | 0.9481              |
| 2.2523 | 1500 | 0.0150          | 0.8297               | 0.8438            | 0.8367        | 0.9501              |
| 2.7027 | 1800 | 0.0145          | 0.8280               | 0.8443            | 0.8361        | 0.9501              |

### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Carbon Emitted**: 0.045 kg of CO2
- **Hours Used**: 0.296 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB

### Framework Versions

- Python: 3.9.16
- SpanMarker: 1.3.1.dev
- Transformers : 4.29.2
- PyTorch: 2.0.1+cu118
- Datasets: 2.14.3
- Tokenizers: 0.13.2