File size: 41,356 Bytes
ed25478 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 |
---
language:
- en
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- loss:MultipleNegativesRankingLoss
- loss:ContrastiveLoss
base_model: sentence-transformers/stsb-distilbert-base
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
- average_precision
- f1
- precision
- recall
- threshold
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
widget:
- source_sentence: What is Mindset?
sentences:
- What is a mindset?
- Can you eat only once a day?
- Is law a good career choice?
- source_sentence: Is a queef real?
sentences:
- Is "G" based on real events?
- What is the entire court process?
- How do I reduce my weight?
- source_sentence: Is Cicret a scam?
sentences:
- Is the Cicret Bracelet a scam?
- Was World War II Inevitable?
- What are some of the best photos?
- source_sentence: What is Planet X?
sentences:
- Do planet X exist?
- What are the best C++ books?
- How can I lose my weight fast?
- source_sentence: How fast is fast?
sentences:
- How does light travel so fast?
- How do I copyright my books?
- What is a black hole made of?
pipeline_tag: sentence-similarity
co2_eq_emissions:
emissions: 32.724475965905576
energy_consumed: 0.08418911136527617
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.399
hardware_used: 1 x NVIDIA GeForce RTX 3090
model-index:
- name: SentenceTransformer based on sentence-transformers/stsb-distilbert-base
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: quora duplicates
type: quora-duplicates
metrics:
- type: cosine_accuracy
value: 0.846
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.7969297170639038
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.7791495198902607
name: Cosine F1
- type: cosine_f1_threshold
value: 0.7139598727226257
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.6977886977886978
name: Cosine Precision
- type: cosine_recall
value: 0.8819875776397516
name: Cosine Recall
- type: cosine_ap
value: 0.8230449963294564
name: Cosine Ap
- type: dot_accuracy
value: 0.843
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 151.2908477783203
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.7660818713450294
name: Dot F1
- type: dot_f1_threshold
value: 143.77838134765625
name: Dot F1 Threshold
- type: dot_precision
value: 0.7237569060773481
name: Dot Precision
- type: dot_recall
value: 0.8136645962732919
name: Dot Recall
- type: dot_ap
value: 0.7946044629726107
name: Dot Ap
- type: manhattan_accuracy
value: 0.838
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 194.99119567871094
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.7704081632653061
name: Manhattan F1
- type: manhattan_f1_threshold
value: 247.49777221679688
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.6536796536796536
name: Manhattan Precision
- type: manhattan_recall
value: 0.937888198757764
name: Manhattan Recall
- type: manhattan_ap
value: 0.8149715271935773
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.841
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 9.02225112915039
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.7703889585947302
name: Euclidean F1
- type: euclidean_f1_threshold
value: 11.385245323181152
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.6463157894736842
name: Euclidean Precision
- type: euclidean_recall
value: 0.953416149068323
name: Euclidean Recall
- type: euclidean_ap
value: 0.8152967320117391
name: Euclidean Ap
- type: max_accuracy
value: 0.846
name: Max Accuracy
- type: max_accuracy_threshold
value: 194.99119567871094
name: Max Accuracy Threshold
- type: max_f1
value: 0.7791495198902607
name: Max F1
- type: max_f1_threshold
value: 247.49777221679688
name: Max F1 Threshold
- type: max_precision
value: 0.7237569060773481
name: Max Precision
- type: max_recall
value: 0.953416149068323
name: Max Recall
- type: max_ap
value: 0.8230449963294564
name: Max Ap
- task:
type: paraphrase-mining
name: Paraphrase Mining
dataset:
name: quora duplicates dev
type: quora-duplicates-dev
metrics:
- type: average_precision
value: 0.5888649029434471
name: Average Precision
- type: f1
value: 0.5761652140962487
name: F1
- type: precision
value: 0.5477552123204396
name: Precision
- type: recall
value: 0.6076834690513064
name: Recall
- type: threshold
value: 0.7728720009326935
name: Threshold
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.963
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9906
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9944
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9982
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.963
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.4285333333333333
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.27568000000000004
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.14494
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8299562338609103
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9590366552956846
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9806221849555673
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9925738410935468
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9784033087450696
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9771579365079368
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9709189650394419
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.9514
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.9852
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.991
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9968
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.9514
name: Dot Precision@1
- type: dot_precision@3
value: 0.4247333333333334
name: Dot Precision@3
- type: dot_precision@5
value: 0.27364
name: Dot Precision@5
- type: dot_precision@10
value: 0.14458000000000001
name: Dot Precision@10
- type: dot_recall@1
value: 0.8194380520427287
name: Dot Recall@1
- type: dot_recall@3
value: 0.9520212390452685
name: Dot Recall@3
- type: dot_recall@5
value: 0.9755502441186265
name: Dot Recall@5
- type: dot_recall@10
value: 0.9910547306614953
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9715023430522326
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9692583333333334
name: Dot Mrr@10
- type: dot_map@100
value: 0.961739772177385
name: Dot Map@100
---
# SentenceTransformer based on sentence-transformers/stsb-distilbert-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) on the [mnrl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) and [cl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/stsb-distilbert-base](https://huggingface.co/sentence-transformers/stsb-distilbert-base) <!-- at revision 82ad392c08f81be9be9bf065339670b23f2e1493 -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Training Datasets:**
- [mnrl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
- [cl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates)
- **Language:** en
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("tomaarsen/stsb-distilbert-base-mnrl-cl-multi")
# Run inference
sentences = [
'How fast is fast?',
'How does light travel so fast?',
'How do I copyright my books?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `quora-duplicates`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:----------|
| cosine_accuracy | 0.846 |
| cosine_accuracy_threshold | 0.7969 |
| cosine_f1 | 0.7791 |
| cosine_f1_threshold | 0.714 |
| cosine_precision | 0.6978 |
| cosine_recall | 0.882 |
| cosine_ap | 0.823 |
| dot_accuracy | 0.843 |
| dot_accuracy_threshold | 151.2908 |
| dot_f1 | 0.7661 |
| dot_f1_threshold | 143.7784 |
| dot_precision | 0.7238 |
| dot_recall | 0.8137 |
| dot_ap | 0.7946 |
| manhattan_accuracy | 0.838 |
| manhattan_accuracy_threshold | 194.9912 |
| manhattan_f1 | 0.7704 |
| manhattan_f1_threshold | 247.4978 |
| manhattan_precision | 0.6537 |
| manhattan_recall | 0.9379 |
| manhattan_ap | 0.815 |
| euclidean_accuracy | 0.841 |
| euclidean_accuracy_threshold | 9.0223 |
| euclidean_f1 | 0.7704 |
| euclidean_f1_threshold | 11.3852 |
| euclidean_precision | 0.6463 |
| euclidean_recall | 0.9534 |
| euclidean_ap | 0.8153 |
| max_accuracy | 0.846 |
| max_accuracy_threshold | 194.9912 |
| max_f1 | 0.7791 |
| max_f1_threshold | 247.4978 |
| max_precision | 0.7238 |
| max_recall | 0.9534 |
| **max_ap** | **0.823** |
#### Paraphrase Mining
* Dataset: `quora-duplicates-dev`
* Evaluated with [<code>ParaphraseMiningEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.ParaphraseMiningEvaluator)
| Metric | Value |
|:----------------------|:-----------|
| **average_precision** | **0.5889** |
| f1 | 0.5762 |
| precision | 0.5478 |
| recall | 0.6077 |
| threshold | 0.7729 |
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.963 |
| cosine_accuracy@3 | 0.9906 |
| cosine_accuracy@5 | 0.9944 |
| cosine_accuracy@10 | 0.9982 |
| cosine_precision@1 | 0.963 |
| cosine_precision@3 | 0.4285 |
| cosine_precision@5 | 0.2757 |
| cosine_precision@10 | 0.1449 |
| cosine_recall@1 | 0.83 |
| cosine_recall@3 | 0.959 |
| cosine_recall@5 | 0.9806 |
| cosine_recall@10 | 0.9926 |
| cosine_ndcg@10 | 0.9784 |
| cosine_mrr@10 | 0.9772 |
| **cosine_map@100** | **0.9709** |
| dot_accuracy@1 | 0.9514 |
| dot_accuracy@3 | 0.9852 |
| dot_accuracy@5 | 0.991 |
| dot_accuracy@10 | 0.9968 |
| dot_precision@1 | 0.9514 |
| dot_precision@3 | 0.4247 |
| dot_precision@5 | 0.2736 |
| dot_precision@10 | 0.1446 |
| dot_recall@1 | 0.8194 |
| dot_recall@3 | 0.952 |
| dot_recall@5 | 0.9756 |
| dot_recall@10 | 0.9911 |
| dot_ndcg@10 | 0.9715 |
| dot_mrr@10 | 0.9693 |
| dot_map@100 | 0.9617 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Datasets
#### mnrl
* Dataset: [mnrl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 100,000 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 6 tokens</li><li>mean: 13.85 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.65 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 14.76 tokens</li><li>max: 64 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:--------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------|
| <code>Why in India do we not have one on one political debate as in USA?</code> | <code>Why cant we have a public debate between politicians in India like the one in US?</code> | <code>Can people on Quora stop India Pakistan debate? We are sick and tired seeing this everyday in bulk?</code> |
| <code>What is OnePlus One?</code> | <code>How is oneplus one?</code> | <code>Why is OnePlus One so good?</code> |
| <code>Does our mind control our emotions?</code> | <code>How do smart and successful people control their emotions?</code> | <code>How can I control my positive emotions for the people whom I love but they don't care about me?</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### cl
* Dataset: [cl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 100,000 training samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 6 tokens</li><li>mean: 15.3 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.66 tokens</li><li>max: 56 tokens</li></ul> | <ul><li>0: ~62.00%</li><li>1: ~38.00%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:---------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------|:---------------|
| <code>What is the step by step guide to invest in share market in india?</code> | <code>What is the step by step guide to invest in share market?</code> | <code>0</code> |
| <code>What is the story of Kohinoor (Koh-i-Noor) Diamond?</code> | <code>What would happen if the Indian government stole the Kohinoor (Koh-i-Noor) diamond back?</code> | <code>0</code> |
| <code>How can I increase the speed of my internet connection while using a VPN?</code> | <code>How can Internet speed be increased by hacking through DNS?</code> | <code>0</code> |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/losses.html#contrastiveloss) with these parameters:
```json
{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
```
### Evaluation Datasets
#### mnrl
* Dataset: [mnrl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 1,000 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 13.84 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.8 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.71 tokens</li><li>max: 56 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:---------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Which programming language is best for developing low-end games?</code> | <code>What coding language should I learn first for making games?</code> | <code>I am entering the world of video game programming and want to know what language I should learn? Because there are so many languages I do not know which one to start with. Can you recommend a language that's easy to learn and can be used with many platforms?</code> |
| <code>Was it appropriate for Meryl Streep to use her Golden Globes speech to attack Donald Trump?</code> | <code>Should Meryl Streep be using her position to attack the president?</code> | <code>Why did Kelly Ann Conway say that Meryl Streep incited peoples worst feelings?</code> |
| <code>Where can I found excellent commercial fridges in Sydney?</code> | <code>Where can I found impressive range of commercial fridges in Sydney?</code> | <code>What is the best grocery delivery service in Sydney?</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
#### cl
* Dataset: [cl](https://huggingface.co/datasets/sentence-transformers/quora-duplicates) at [451a485](https://huggingface.co/datasets/sentence-transformers/quora-duplicates/tree/451a4850bd141edb44ade1b5828c259abd762cdb)
* Size: 1,000 evaluation samples
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------|
| type | string | string | int |
| details | <ul><li>min: 5 tokens</li><li>mean: 15.59 tokens</li><li>max: 59 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.65 tokens</li><li>max: 76 tokens</li></ul> | <ul><li>0: ~63.40%</li><li>1: ~36.60%</li></ul> |
* Samples:
| sentence1 | sentence2 | label |
|:--------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------|:---------------|
| <code>What should I ask my friend to get from UK to India?</code> | <code>What is the process of getting a surgical residency in UK after completing MBBS from India?</code> | <code>0</code> |
| <code>How can I learn hacking for free?</code> | <code>How can I learn to hack seriously?</code> | <code>1</code> |
| <code>Which is the best website to learn programming language C++?</code> | <code>Which is the best website to learn C++ Programming language for free?</code> | <code>0</code> |
* Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/losses.html#contrastiveloss) with these parameters:
```json
{
"distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
"margin": 0.5,
"size_average": true
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: False
- `per_device_train_batch_size`: 64
- `per_device_eval_batch_size`: 64
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: None
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | cl loss | mnrl loss | cosine_map@100 | quora-duplicates-dev_average_precision | quora-duplicates_max_ap |
|:------:|:----:|:-------------:|:-------:|:---------:|:--------------:|:--------------------------------------:|:-----------------------:|
| 0 | 0 | - | - | - | 0.9245 | 0.4200 | 0.6890 |
| 0.0320 | 100 | 0.1634 | - | - | - | - | - |
| 0.0640 | 200 | 0.1206 | - | - | - | - | - |
| 0.0800 | 250 | - | 0.0190 | 0.1469 | 0.9530 | 0.5068 | 0.7354 |
| 0.0960 | 300 | 0.1036 | - | - | - | - | - |
| 0.1280 | 400 | 0.0836 | - | - | - | - | - |
| 0.1599 | 500 | 0.0918 | 0.0180 | 0.1008 | 0.9553 | 0.5259 | 0.7643 |
| 0.1919 | 600 | 0.0784 | - | - | - | - | - |
| 0.2239 | 700 | 0.0656 | - | - | - | - | - |
| 0.2399 | 750 | - | 0.0177 | 0.0905 | 0.9593 | 0.5305 | 0.7686 |
| 0.2559 | 800 | 0.0593 | - | - | - | - | - |
| 0.2879 | 900 | 0.0534 | - | - | - | - | - |
| 0.3199 | 1000 | 0.0612 | 0.0161 | 0.0736 | 0.9642 | 0.5512 | 0.7881 |
| 0.3519 | 1100 | 0.0572 | - | - | - | - | - |
| 0.3839 | 1200 | 0.06 | - | - | - | - | - |
| 0.3999 | 1250 | - | 0.0158 | 0.0641 | 0.9649 | 0.5567 | 0.7983 |
| 0.4159 | 1300 | 0.0565 | - | - | - | - | - |
| 0.4479 | 1400 | 0.0565 | - | - | - | - | - |
| 0.4798 | 1500 | 0.0475 | 0.0154 | 0.0578 | 0.9645 | 0.5614 | 0.8062 |
| 0.5118 | 1600 | 0.0596 | - | - | - | - | - |
| 0.5438 | 1700 | 0.0509 | - | - | - | - | - |
| 0.5598 | 1750 | - | 0.0150 | 0.0525 | 0.9674 | 0.5762 | 0.8092 |
| 0.5758 | 1800 | 0.0403 | - | - | - | - | - |
| 0.6078 | 1900 | 0.0431 | - | - | - | - | - |
| 0.6398 | 2000 | 0.0481 | 0.0150 | 0.0531 | 0.9689 | 0.5824 | 0.8128 |
| 0.6718 | 2100 | 0.05 | - | - | - | - | - |
| 0.7038 | 2200 | 0.0468 | - | - | - | - | - |
| 0.7198 | 2250 | - | 0.0146 | 0.0486 | 0.9684 | 0.5756 | 0.8195 |
| 0.7358 | 2300 | 0.0436 | - | - | - | - | - |
| 0.7678 | 2400 | 0.0409 | - | - | - | - | - |
| 0.7997 | 2500 | 0.0391 | 0.0145 | 0.0454 | 0.9705 | 0.5822 | 0.8190 |
| 0.8317 | 2600 | 0.0412 | - | - | - | - | - |
| 0.8637 | 2700 | 0.0373 | - | - | - | - | - |
| 0.8797 | 2750 | - | 0.0143 | 0.0451 | 0.9705 | 0.5889 | 0.8229 |
| 0.8957 | 2800 | 0.0428 | - | - | - | - | - |
| 0.9277 | 2900 | 0.0419 | - | - | - | - | - |
| 0.9597 | 3000 | 0.0376 | 0.0143 | 0.0435 | 0.9709 | 0.5889 | 0.8230 |
| 0.9917 | 3100 | 0.0366 | - | - | - | - | - |
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.084 kWh
- **Carbon Emitted**: 0.033 kg of CO2
- **Hours Used**: 0.399 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.11.6
- Sentence Transformers: 3.0.0.dev0
- Transformers: 4.41.0.dev0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.26.1
- Datasets: 2.18.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
#### ContrastiveLoss
```bibtex
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |