Panda Pick and Place
Browse files- A2C-pandaPickAndPlace-v3.zip +3 -0
- A2C-pandaPickAndPlace-v3/_stable_baselines3_version +1 -0
- A2C-pandaPickAndPlace-v3/data +97 -0
- A2C-pandaPickAndPlace-v3/policy.optimizer.pth +3 -0
- A2C-pandaPickAndPlace-v3/policy.pth +3 -0
- A2C-pandaPickAndPlace-v3/pytorch_variables.pth +3 -0
- A2C-pandaPickAndPlace-v3/system_info.txt +9 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
A2C-pandaPickAndPlace-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b1cea2fe5e31c199d60cb648f22c34a3c780cf5c99d5bd2b89c8492af1a720d
|
3 |
+
size 124467
|
A2C-pandaPickAndPlace-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
A2C-pandaPickAndPlace-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b151b270430>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b151b26d9c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1699849099296585133,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIQXkPi+zQL9DnWA9isq4v2+CKL9DnWA9FZm9v3dYq777eWA9J1OnP+ahDz+poWA9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1qqVv/jukb+UQou/tu2jv7cbfT+UQou/fMLfvsoJLL5uFzE/elmkv7nrpD6UQou/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADViV4/Pnc1P998Nz+YBKi+IV6HP+0QiD5xaN0/IQXkPi+zQL9DnWA9g0qxuw0QIrzBFg+8WpDiPHf/SLqv7c48dziUOizHpruD7gI8+hnVvlCsFcBAHaq/XxdAPS9S5r0xrHO8azclv4rKuL9vgii/Q51gPaQ+uLsk4Ry8alO7uuhE6jyNl0E5r+3OPIc4lDowx6a7l0AbPNDHKL1P+Ge/thyPv3DCV8Dry5Y/C02jvaY+Jb8Vmb2/d1irvvt5YD2416O7D60dvGDturusI+M8E8vFuZrtzjw2P5Q6eMemu0mCDDxk4kY+kHrFP1B6hj+/SiA+JR8nvQbvW7/AaN0/J1OnP+ahDz+poWA96e6vu6dzHryFaJK75f3hPHKEGTpJfMs83NZqu4qyBrxJChI8lGgOSwRLE4aUaBJ0lFKUdS4=",
|
33 |
+
"achieved_goal": "[[ 0.44535163 -0.7527341 0.05483748]\n [-1.443681 -0.65824026 0.05483748]\n [-1.4812342 -0.3346593 0.05480383]\n [ 1.3072251 0.5610641 0.05484167]]",
|
34 |
+
"desired_goal": "[[-1.169276 -1.1401052 -1.0879693 ]\n [-1.2806919 0.98870414 -1.0879693 ]\n [-0.43703067 -0.16800609 0.69176376]\n [-1.2839806 0.32211092 -1.0879693 ]]",
|
35 |
+
"observation": "[[ 8.6929065e-01 7.0885074e-01 7.1674913e-01 -3.2816005e-01\n 1.0575601e+00 2.6575413e-01 1.7297498e+00 4.4535163e-01\n -7.5273412e-01 5.4837476e-02 -5.4104938e-03 -9.8915221e-03\n -8.7334523e-03 2.7656723e-02 -7.6674618e-04 2.5259821e-02\n 1.1308332e-03 -5.0896611e-03 7.9914359e-03]\n [-4.1621381e-01 -2.3386421e+00 -1.3290176e+00 4.6897288e-02\n -1.1246144e-01 -1.4872597e-02 -6.4537686e-01 -1.4436810e+00\n -6.5824026e-01 5.4837476e-02 -5.6227017e-03 -9.5751621e-03\n -1.4291827e-03 2.8597310e-02 1.8462371e-04 2.5259821e-02\n 1.1308350e-03 -5.0896630e-03 9.4758486e-03]\n [-4.1206181e-02 -9.0613264e-01 -1.1180637e+00 -3.3712425e+00\n 1.1780981e+00 -7.9736792e-02 -6.4548719e-01 -1.4812342e+00\n -3.3465931e-01 5.4803830e-02 -5.0000809e-03 -9.6237799e-03\n -5.7045668e-03 2.7726971e-02 -3.7726070e-04 2.5259782e-02\n 1.1310342e-03 -5.0896965e-03 8.5759843e-03]\n [ 1.9422299e-01 1.5428028e+00 1.0506077e+00 1.5653513e-01\n -4.0801186e-02 -8.5911596e-01 1.7297592e+00 1.3072251e+00\n 5.6106412e-01 5.4841671e-02 -5.3690565e-03 -9.6711284e-03\n -4.4680261e-03 2.7586887e-02 5.8562227e-04 2.4839537e-02\n -3.5833633e-03 -8.2212780e-03 8.9135850e-03]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAALyM7PatcDz4K16M8RcUzvTK/1j0K16M8GRrPPbvF07sK16M8HwixPRtAIj0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUiUPvsvdm70t2S0+m9quPSgSgT0K16M8799MvfK3ET4bI3M9J7GsPfrHRjwK16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAALyM7PatcDz4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEXFM70yv9Y9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAZGs89u8XTuwrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAHwixPRtAIj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=",
|
44 |
+
"achieved_goal": "[[ 0.04568785 0.14000194 0.02 ]\n [-0.0438893 0.10485686 0.02 ]\n [ 0.101124 -0.00646278 0.02 ]\n [ 0.08644127 0.03961192 0.02 ]]",
|
45 |
+
"desired_goal": "[[-0.1397908 -0.07610663 0.16977377]\n [ 0.08537789 0.06302291 0.02 ]\n [-0.05001825 0.14230326 0.05935965]\n [ 0.08432227 0.01213264 0.02 ]]",
|
46 |
+
"observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 4.56878506e-02\n 1.40001938e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -4.38893028e-02\n 1.04856864e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.01123996e-01\n -6.46278029e-03 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 8.64412710e-02\n 3.96119170e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CpU5RNh3JQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVCKKP4mDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUztO2y9mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVC4VRDTjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVL15rxiHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVUx3mmtRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVGdt/FzddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVVElVtGedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVePrGBFvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVnCRGMGYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVYnBDXvqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVmsVLzwudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVvS+HrQgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpV33m/336dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVpWZqmCRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpV3+Il+mWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWBQnhKlIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWKcWTHKfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpV7/AKv3bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWKkHlfZ3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWT0GNaQndX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpWUOF6AvtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWdKSHM2WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWOxpcophdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpWPGaYu01dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWdOFHrhSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWmPLxI8RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWu3i704BdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWg6EBbOedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWviHARChdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpW5NiYsundX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXBtbLU1AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWzcOkLx7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXEGZVn27dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXPRceKbbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXZJpvgm7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXL8CHRCydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXfOIyj59dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXqVqveP8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpX0IEbHZLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXm3wTdtVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpX4b7TDwZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYDoN/e+FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYN/oaDPGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYBAZKnNxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYUMrupjudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYf3XI2fkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYp1IZqEfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYc89GI9DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYvsXSBsidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpY67hNucddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZFjQ7cO9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpY5AuIyj6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZN1MM7U5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZZvP9kz5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZklXA/LUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZXwiqyWzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZsQ/HHWCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZ409ZA6ddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaD1inYQKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZ3ZOafBfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaMp4B3iadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaYru6VdHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpajewC8vmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaWtb1RLsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaphAOavzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpazC53C9AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpa7qZML4OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpatnO0LMLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpa8cuJ1q4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbF7QswtbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbOXTEzfrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbAcwxnFpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbOWg3974dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbXtdiUgTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbggpazNVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbSgq/dqMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpbg4s3AEddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbqdD6WPcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbzEdV/+bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpbk/EXLvDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbzYao/A1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpb83FkxyodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcFdwFTvRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpb3eizsyBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcF9j5KvndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcO61kUbldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcXZ13dKvdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpcXzMaCL/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcJXOv+wUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcXm0E5hjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpcg09hZyNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcqC/oJRgdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpcqY4p+c6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpcbiv5gw5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcplUQ04zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpcy/kmx+sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpc8FfqoqDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpctWBBiTddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpc7kMTewcdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True True]",
|
82 |
+
"bounded_above": "[ True True True True]",
|
83 |
+
"_shape": [
|
84 |
+
4
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
A2C-pandaPickAndPlace-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a0bbf8e9d3821bc4072c08c15f71ae7d92aceb0305290b6e2ba3267656c173e
|
3 |
+
size 52079
|
A2C-pandaPickAndPlace-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0dc23baa54d1931634101329262ff0762262a4fb42cb931936bf4773b680e875
|
3 |
+
size 53359
|
A2C-pandaPickAndPlace-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
A2C-pandaPickAndPlace-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPickAndPlace-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPickAndPlace-v3
|
16 |
+
type: PandaPickAndPlace-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -50.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaPickAndPlace-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaPickAndPlace-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7b151b270430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b151b26d9c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699849099296585133, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAIQXkPi+zQL9DnWA9isq4v2+CKL9DnWA9FZm9v3dYq777eWA9J1OnP+ahDz+poWA9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1qqVv/jukb+UQou/tu2jv7cbfT+UQou/fMLfvsoJLL5uFzE/elmkv7nrpD6UQou/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADViV4/Pnc1P998Nz+YBKi+IV6HP+0QiD5xaN0/IQXkPi+zQL9DnWA9g0qxuw0QIrzBFg+8WpDiPHf/SLqv7c48dziUOizHpruD7gI8+hnVvlCsFcBAHaq/XxdAPS9S5r0xrHO8azclv4rKuL9vgii/Q51gPaQ+uLsk4Ry8alO7uuhE6jyNl0E5r+3OPIc4lDowx6a7l0AbPNDHKL1P+Ge/thyPv3DCV8Dry5Y/C02jvaY+Jb8Vmb2/d1irvvt5YD2416O7D60dvGDturusI+M8E8vFuZrtzjw2P5Q6eMemu0mCDDxk4kY+kHrFP1B6hj+/SiA+JR8nvQbvW7/AaN0/J1OnP+ahDz+poWA96e6vu6dzHryFaJK75f3hPHKEGTpJfMs83NZqu4qyBrxJChI8lGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.44535163 -0.7527341 0.05483748]\n [-1.443681 -0.65824026 0.05483748]\n [-1.4812342 -0.3346593 0.05480383]\n [ 1.3072251 0.5610641 0.05484167]]", "desired_goal": "[[-1.169276 -1.1401052 -1.0879693 ]\n [-1.2806919 0.98870414 -1.0879693 ]\n [-0.43703067 -0.16800609 0.69176376]\n [-1.2839806 0.32211092 -1.0879693 ]]", "observation": "[[ 8.6929065e-01 7.0885074e-01 7.1674913e-01 -3.2816005e-01\n 1.0575601e+00 2.6575413e-01 1.7297498e+00 4.4535163e-01\n -7.5273412e-01 5.4837476e-02 -5.4104938e-03 -9.8915221e-03\n -8.7334523e-03 2.7656723e-02 -7.6674618e-04 2.5259821e-02\n 1.1308332e-03 -5.0896611e-03 7.9914359e-03]\n [-4.1621381e-01 -2.3386421e+00 -1.3290176e+00 4.6897288e-02\n -1.1246144e-01 -1.4872597e-02 -6.4537686e-01 -1.4436810e+00\n -6.5824026e-01 5.4837476e-02 -5.6227017e-03 -9.5751621e-03\n -1.4291827e-03 2.8597310e-02 1.8462371e-04 2.5259821e-02\n 1.1308350e-03 -5.0896630e-03 9.4758486e-03]\n [-4.1206181e-02 -9.0613264e-01 -1.1180637e+00 -3.3712425e+00\n 1.1780981e+00 -7.9736792e-02 -6.4548719e-01 -1.4812342e+00\n -3.3465931e-01 5.4803830e-02 -5.0000809e-03 -9.6237799e-03\n -5.7045668e-03 2.7726971e-02 -3.7726070e-04 2.5259782e-02\n 1.1310342e-03 -5.0896965e-03 8.5759843e-03]\n [ 1.9422299e-01 1.5428028e+00 1.0506077e+00 1.5653513e-01\n -4.0801186e-02 -8.5911596e-01 1.7297592e+00 1.3072251e+00\n 5.6106412e-01 5.4841671e-02 -5.3690565e-03 -9.6711284e-03\n -4.4680261e-03 2.7586887e-02 5.8562227e-04 2.4839537e-02\n -3.5833633e-03 -8.2212780e-03 8.9135850e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWViwIAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAALyM7PatcDz4K16M8RcUzvTK/1j0K16M8GRrPPbvF07sK16M8HwixPRtAIj0K16M8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUiUPvsvdm70t2S0+m9quPSgSgT0K16M8799MvfK3ET4bI3M9J7GsPfrHRjwK16M8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWMAEAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAALyM7PatcDz4K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA6nIdPRlsGqxDI0o+AAAAAAAAAIAAAAAAAAAAAEXFM70yv9Y9CtejPAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOpyHT0ZbBqsQyNKPgAAAAAAAACAAAAAAAAAAAAZGs89u8XTuwrXozwAAAAAAAAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAAAAAAAHwixPRtAIj0K16M8AAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwRLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.04568785 0.14000194 0.02 ]\n [-0.0438893 0.10485686 0.02 ]\n [ 0.101124 -0.00646278 0.02 ]\n [ 0.08644127 0.03961192 0.02 ]]", "desired_goal": "[[-0.1397908 -0.07610663 0.16977377]\n [ 0.08537789 0.06302291 0.02 ]\n [-0.05001825 0.14230326 0.05935965]\n [ 0.08432227 0.01213264 0.02 ]]", "observation": "[[ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 4.56878506e-02\n 1.40001938e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 -4.38893028e-02\n 1.04856864e-01 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 1.01123996e-01\n -6.46278029e-03 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00 0.00000000e+00 8.64412710e-02\n 3.96119170e-02 1.99999996e-02 0.00000000e+00 -0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00\n 0.00000000e+00 0.00000000e+00 0.00000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEkAAAAAAACMAWyUSzKMAXSUR0CpU5RNh3JQdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVCKKP4mDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpUztO2y9mdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVC4VRDTjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVL15rxiHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVUx3mmtRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVGdt/FzddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVVElVtGedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVePrGBFvdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVnCRGMGYdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVYnBDXvqdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVmsVLzwudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVvS+HrQgdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpV33m/336dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpVpWZqmCRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpV3+Il+mWdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWBQnhKlIdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWKcWTHKfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpV7/AKv3bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWKkHlfZ3dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWT0GNaQndX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpWUOF6AvtdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWdKSHM2WdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWOxpcophdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpWPGaYu01dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWdOFHrhSdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWmPLxI8RdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWu3i704BdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWg6EBbOedX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWviHARChdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpW5NiYsundX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXBtbLU1AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpWzcOkLx7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXEGZVn27dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXPRceKbbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXZJpvgm7dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXL8CHRCydX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXfOIyj59dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXqVqveP8dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpX0IEbHZLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpXm3wTdtVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpX4b7TDwZdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYDoN/e+FdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYN/oaDPGdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYBAZKnNxdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYUMrupjudX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYf3XI2fkdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYp1IZqEfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYc89GI9DdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpYvsXSBsidX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpY67hNucddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZFjQ7cO9dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpY5AuIyj6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZN1MM7U5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZZvP9kz5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZklXA/LUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZXwiqyWzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZsQ/HHWCdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZ409ZA6ddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaD1inYQKdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpZ3ZOafBfdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaMp4B3iadX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaYru6VdHdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpajewC8vmdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaWtb1RLsdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpaphAOavzdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpazC53C9AdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpa7qZML4OdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpatnO0LMLdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpa8cuJ1q4dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbF7QswtbdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbOXTEzfrdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbAcwxnFpdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbOWg3974dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbXtdiUgTdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbggpazNVdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbSgq/dqMdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpbg4s3AEddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbqdD6WPcdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbzEdV/+bdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpbk/EXLvDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpbzYao/A1dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpb83FkxyodX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcFdwFTvRdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpb3eizsyBdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcF9j5KvndX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcO61kUbldX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcXZ13dKvdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpcXzMaCL/dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcJXOv+wUdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcXm0E5hjdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpcg09hZyNdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcqC/oJRgdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CpcqY4p+c6dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpcbiv5gw5dX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpcplUQ04zdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpcy/kmx+sdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpc8FfqoqDdX2UKGgGR8BJAAAAAAAAaAdLMmgIR0CpctWBBiTddX2UKGgGR8BJAAAAAAAAaAdLMmgIR0Cpc7kMTewcdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (822 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -50.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-13T05:12:37.905090"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02179deaad14ebfb4e86c61e2d86b28f7dad917ff212931f0caeb814754f70f9
|
3 |
+
size 3023
|