--- base_model: EleutherAI/pythia-1.4b-deduped library_name: peft license: apache-2.0 tags: - generated_from_trainer model-index: - name: outputs/lora-alpaca-pythia results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: EleutherAI/pythia-1.4b-deduped load_in_8bit: true datasets: - path: teknium/GPT4-LLM-Cleaned type: alpaca dataset_prepared_path: val_set_size: 0.05 adapter: lora lora_model_dir: sequence_len: 512 lora_r: 16 lora_alpha: 32 lora_dropout: 0.05 lora_target_modules: - query_key_value - dense - dense_h_to_4h - dense_4h_to_h lora_target_linear: lora_fan_in_fan_out: true # pythia/GPTNeoX lora specific wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: output_dir: ./outputs/lora-alpaca-pythia gradient_accumulation_steps: 1 micro_batch_size: 4 num_epochs: 4 learning_rate: 0.00001 train_on_inputs: false group_by_length: false bf16: auto tf32: true early_stopping_patience: resume_from_checkpoint: local_rank: weight_decay: 0.1 evals_per_epoch: 4 logging_steps: 1 push_to_hub: tommyp111/pythia-1.4b-deduped-alpaca-lora wandb_project: pythia-alpaca-lora wandb_name: pythia-1.4b ```

[Visualize in Weights & Biases](https://wandb.ai/tompollak/pythia-alpaca-lora/runs/oyhginqx) # outputs/lora-alpaca-pythia This model is a fine-tuned version of [EleutherAI/pythia-1.4b-deduped](https://huggingface.co/EleutherAI/pythia-1.4b-deduped) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2444 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:-----:|:---------------:| | 1.5363 | 0.0001 | 1 | 2.6674 | | 1.2474 | 0.25 | 3190 | 1.4167 | | 1.3556 | 0.5 | 6380 | 1.3586 | | 1.2912 | 0.75 | 9570 | 1.3302 | | 1.2149 | 1.0 | 12760 | 1.3089 | | 1.6017 | 1.25 | 15950 | 1.2917 | | 1.1827 | 1.5 | 19140 | 1.2827 | | 0.9565 | 1.75 | 22330 | 1.2739 | | 1.2363 | 2.0 | 25520 | 1.2674 | | 1.3477 | 2.25 | 28710 | 1.2596 | | 1.6589 | 2.5 | 31900 | 1.2571 | | 1.1538 | 2.75 | 35090 | 1.2530 | | 1.5866 | 3.0 | 38280 | 1.2473 | | 1.0768 | 3.25 | 41470 | 1.2464 | | 1.4019 | 3.5 | 44660 | 1.2452 | | 1.1724 | 3.75 | 47850 | 1.2434 | | 1.3227 | 4.0 | 51040 | 1.2444 | ### Framework versions - PEFT 0.11.1 - Transformers 4.43.1 - Pytorch 2.3.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1