File size: 2,585 Bytes
a8f7847 0bebc77 a8f7847 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- clinc_oos
metrics:
- accuracy
model-index:
- name: distilbert-base-uncased-distilled-clinc
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: clinc_oos
type: clinc_oos
args: plus
metrics:
- name: Accuracy
type: accuracy
value: 0.9393548387096774
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-base-uncased-distilled-clinc
This model is a fine-tuned with knowledge distillation version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. The model is used in Chapter 8: Making Transformers Efficient in Production in the [NLP with Transformers book](https://learning.oreilly.com/library/view/natural-language-processing/9781098103231/). You can find the full code in the accompanying [Github repository](https://github.com/nlp-with-transformers/notebooks/blob/main/08_model-compression.ipynb).
It achieves the following results on the evaluation set:
- Loss: 0.1005
- Accuracy: 0.9394
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 48
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.9031 | 1.0 | 318 | 0.5745 | 0.7365 |
| 0.4481 | 2.0 | 636 | 0.2856 | 0.8748 |
| 0.2528 | 3.0 | 954 | 0.1798 | 0.9187 |
| 0.176 | 4.0 | 1272 | 0.1398 | 0.9294 |
| 0.1416 | 5.0 | 1590 | 0.1211 | 0.9348 |
| 0.1243 | 6.0 | 1908 | 0.1116 | 0.9348 |
| 0.1133 | 7.0 | 2226 | 0.1062 | 0.9377 |
| 0.1075 | 8.0 | 2544 | 0.1035 | 0.9387 |
| 0.1039 | 9.0 | 2862 | 0.1014 | 0.9381 |
| 0.1018 | 10.0 | 3180 | 0.1005 | 0.9394 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.1+cu102
- Datasets 1.13.0
- Tokenizers 0.10.3
|