Inference Endpoints
File size: 7,426 Bytes
a567fa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright (c) Facebook, Inc. and its affiliates.
import unittest

from detectron2.layers import ShapeSpec
from detectron2.modeling.mmdet_wrapper import MMDetBackbone, MMDetDetector

try:
    import mmdet.models  # noqa

    HAS_MMDET = True
except ImportError:
    HAS_MMDET = False


@unittest.skipIf(not HAS_MMDET, "mmdet not available")
class TestMMDetWrapper(unittest.TestCase):
    def test_backbone(self):
        MMDetBackbone(
            backbone=dict(
                type="DetectoRS_ResNet",
                conv_cfg=dict(type="ConvAWS"),
                sac=dict(type="SAC", use_deform=True),
                stage_with_sac=(False, True, True, True),
                depth=50,
                num_stages=4,
                out_indices=(0, 1, 2, 3),
                frozen_stages=1,
                norm_cfg=dict(type="BN", requires_grad=True),
                norm_eval=True,
                style="pytorch",
            ),
            neck=dict(
                type="FPN",
                in_channels=[256, 512, 1024, 2048],
                out_channels=256,
                num_outs=5,
            ),
            # skip pretrained model for tests
            # pretrained_backbone="torchvision://resnet50",
            output_shapes=[ShapeSpec(channels=256, stride=s) for s in [4, 8, 16, 32, 64]],
            output_names=["p2", "p3", "p4", "p5", "p6"],
        )

    def test_detector(self):
        # a basic R50 Mask R-CNN
        MMDetDetector(
            detector=dict(
                type="MaskRCNN",
                backbone=dict(
                    type="ResNet",
                    depth=50,
                    num_stages=4,
                    out_indices=(0, 1, 2, 3),
                    frozen_stages=1,
                    norm_cfg=dict(type="BN", requires_grad=True),
                    norm_eval=True,
                    style="pytorch",
                    # skip pretrained model for tests
                    # init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'))
                ),
                neck=dict(
                    type="FPN", in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=5
                ),
                rpn_head=dict(
                    type="RPNHead",
                    in_channels=256,
                    feat_channels=256,
                    anchor_generator=dict(
                        type="AnchorGenerator",
                        scales=[8],
                        ratios=[0.5, 1.0, 2.0],
                        strides=[4, 8, 16, 32, 64],
                    ),
                    bbox_coder=dict(
                        type="DeltaXYWHBBoxCoder",
                        target_means=[0.0, 0.0, 0.0, 0.0],
                        target_stds=[1.0, 1.0, 1.0, 1.0],
                    ),
                    loss_cls=dict(type="CrossEntropyLoss", use_sigmoid=True, loss_weight=1.0),
                    loss_bbox=dict(type="L1Loss", loss_weight=1.0),
                ),
                roi_head=dict(
                    type="StandardRoIHead",
                    bbox_roi_extractor=dict(
                        type="SingleRoIExtractor",
                        roi_layer=dict(type="RoIAlign", output_size=7, sampling_ratio=0),
                        out_channels=256,
                        featmap_strides=[4, 8, 16, 32],
                    ),
                    bbox_head=dict(
                        type="Shared2FCBBoxHead",
                        in_channels=256,
                        fc_out_channels=1024,
                        roi_feat_size=7,
                        num_classes=80,
                        bbox_coder=dict(
                            type="DeltaXYWHBBoxCoder",
                            target_means=[0.0, 0.0, 0.0, 0.0],
                            target_stds=[0.1, 0.1, 0.2, 0.2],
                        ),
                        reg_class_agnostic=False,
                        loss_cls=dict(type="CrossEntropyLoss", use_sigmoid=False, loss_weight=1.0),
                        loss_bbox=dict(type="L1Loss", loss_weight=1.0),
                    ),
                    mask_roi_extractor=dict(
                        type="SingleRoIExtractor",
                        roi_layer=dict(type="RoIAlign", output_size=14, sampling_ratio=0),
                        out_channels=256,
                        featmap_strides=[4, 8, 16, 32],
                    ),
                    mask_head=dict(
                        type="FCNMaskHead",
                        num_convs=4,
                        in_channels=256,
                        conv_out_channels=256,
                        num_classes=80,
                        loss_mask=dict(type="CrossEntropyLoss", use_mask=True, loss_weight=1.0),
                    ),
                ),
                # model training and testing settings
                train_cfg=dict(
                    rpn=dict(
                        assigner=dict(
                            type="MaxIoUAssigner",
                            pos_iou_thr=0.7,
                            neg_iou_thr=0.3,
                            min_pos_iou=0.3,
                            match_low_quality=True,
                            ignore_iof_thr=-1,
                        ),
                        sampler=dict(
                            type="RandomSampler",
                            num=256,
                            pos_fraction=0.5,
                            neg_pos_ub=-1,
                            add_gt_as_proposals=False,
                        ),
                        allowed_border=-1,
                        pos_weight=-1,
                        debug=False,
                    ),
                    rpn_proposal=dict(
                        nms_pre=2000,
                        max_per_img=1000,
                        nms=dict(type="nms", iou_threshold=0.7),
                        min_bbox_size=0,
                    ),
                    rcnn=dict(
                        assigner=dict(
                            type="MaxIoUAssigner",
                            pos_iou_thr=0.5,
                            neg_iou_thr=0.5,
                            min_pos_iou=0.5,
                            match_low_quality=True,
                            ignore_iof_thr=-1,
                        ),
                        sampler=dict(
                            type="RandomSampler",
                            num=512,
                            pos_fraction=0.25,
                            neg_pos_ub=-1,
                            add_gt_as_proposals=True,
                        ),
                        mask_size=28,
                        pos_weight=-1,
                        debug=False,
                    ),
                ),
                test_cfg=dict(
                    rpn=dict(
                        nms_pre=1000,
                        max_per_img=1000,
                        nms=dict(type="nms", iou_threshold=0.7),
                        min_bbox_size=0,
                    ),
                    rcnn=dict(
                        score_thr=0.05,
                        nms=dict(type="nms", iou_threshold=0.5),
                        max_per_img=100,
                        mask_thr_binary=0.5,
                    ),
                ),
            ),
            pixel_mean=[1, 2, 3],
            pixel_std=[1, 2, 3],
        )