File size: 9,349 Bytes
a567fa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
# Copyright (c) Facebook, Inc. and its affiliates.
# Modified by Jialian Wu from https://github.com/facebookresearch/Detic/blob/main/detic/data/custom_dataset_dataloader.py
import operator
import torch
import torch.utils.data
from detectron2.utils.comm import get_world_size
from detectron2.config import configurable
from torch.utils.data.sampler import BatchSampler, Sampler
from detectron2.data.common import DatasetFromList, MapDataset
from detectron2.data.dataset_mapper import DatasetMapper
from detectron2.data.build import get_detection_dataset_dicts, build_batch_data_loader
from detectron2.data.samplers import TrainingSampler
from detectron2.data.build import worker_init_reset_seed, print_instances_class_histogram
from detectron2.data.build import filter_images_with_only_crowd_annotations
from detectron2.data.build import filter_images_with_few_keypoints
from detectron2.data.build import check_metadata_consistency
from detectron2.data.catalog import MetadataCatalog, DatasetCatalog
from detectron2.utils import comm
import itertools
from typing import Optional
def _custom_train_loader_from_config(cfg, mapper=None, *, dataset=None, sampler=None):
sampler_name = cfg.DATALOADER.SAMPLER_TRAIN
if 'MultiDataset' in sampler_name:
dataset_dicts = get_detection_dataset_dicts_with_source(
cfg.DATASETS.TRAIN,
filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
if cfg.MODEL.KEYPOINT_ON else 0,
proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
)
else:
dataset_dicts = get_detection_dataset_dicts(
cfg.DATASETS.TRAIN,
filter_empty=cfg.DATALOADER.FILTER_EMPTY_ANNOTATIONS,
min_keypoints=cfg.MODEL.ROI_KEYPOINT_HEAD.MIN_KEYPOINTS_PER_IMAGE
if cfg.MODEL.KEYPOINT_ON else 0,
proposal_files=cfg.DATASETS.PROPOSAL_FILES_TRAIN if cfg.MODEL.LOAD_PROPOSALS else None,
)
if mapper is None:
mapper = DatasetMapper(cfg, True)
if sampler is not None:
pass
elif sampler_name == "TrainingSampler":
sampler = TrainingSampler(len(dataset))
elif sampler_name == "MultiDatasetSampler":
sampler = MultiDatasetSampler(
dataset_dicts,
dataset_ratio=cfg.DATALOADER.DATASET_RATIO,
)
else:
raise ValueError("Unknown training sampler: {}".format(sampler_name))
return {
"dataset": dataset_dicts,
"sampler": sampler,
"mapper": mapper,
"total_batch_size": cfg.SOLVER.IMS_PER_BATCH,
"num_workers": cfg.DATALOADER.NUM_WORKERS,
'dataset_bs': cfg.DATALOADER.DATASET_BS,
'num_datasets': len(cfg.DATASETS.TRAIN)
}
@configurable(from_config=_custom_train_loader_from_config)
def build_custom_train_loader(
dataset, *, mapper, sampler,
total_batch_size=16,
num_workers=0,
num_datasets=1,
dataset_bs=1
):
if isinstance(dataset, list):
dataset = DatasetFromList(dataset, copy=False)
if mapper is not None:
dataset = MapDataset(dataset, mapper)
if sampler is None:
sampler = TrainingSampler(len(dataset))
assert isinstance(sampler, torch.utils.data.sampler.Sampler)
return build_dataset_batch_data_loader(
dataset_bs,
dataset,
sampler,
total_batch_size,
num_datasets=num_datasets,
num_workers=num_workers,
)
def build_dataset_batch_data_loader(
dataset_bs, dataset, sampler, total_batch_size, num_datasets, num_workers=0
):
world_size = get_world_size()
assert (
total_batch_size > 0 and total_batch_size % world_size == 0
), "Total batch size ({}) must be divisible by the number of gpus ({}).".format(
total_batch_size, world_size
)
data_loader = torch.utils.data.DataLoader(
dataset,
sampler=sampler,
num_workers=num_workers,
batch_sampler=None,
collate_fn=operator.itemgetter(0), # don't batch, but yield individual elements
worker_init_fn=worker_init_reset_seed,
)
if num_datasets > 1:
return MultiDatasets(data_loader, dataset_bs, num_datasets)
else:
return SingleDataset(data_loader, dataset_bs)
def get_detection_dataset_dicts_with_source(
dataset_names, filter_empty=True, min_keypoints=0, proposal_files=None
):
assert len(dataset_names)
dataset_dicts = [DatasetCatalog.get(dataset_name) for dataset_name in dataset_names]
for dataset_name, dicts in zip(dataset_names, dataset_dicts):
assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
for source_id, (dataset_name, dicts) in \
enumerate(zip(dataset_names, dataset_dicts)):
assert len(dicts), "Dataset '{}' is empty!".format(dataset_name)
for d in dicts:
d['dataset_source'] = source_id
if "annotations" in dicts[0]:
try:
class_names = MetadataCatalog.get(dataset_name).thing_classes
check_metadata_consistency("thing_classes", dataset_name)
print_instances_class_histogram(dicts, class_names)
except AttributeError: # class names are not available for this dataset
pass
assert proposal_files is None
dataset_dicts = list(itertools.chain.from_iterable(dataset_dicts))
has_instances = "annotations" in dataset_dicts[0]
if filter_empty and has_instances:
dataset_dicts = filter_images_with_only_crowd_annotations(dataset_dicts)
if min_keypoints > 0 and has_instances:
dataset_dicts = filter_images_with_few_keypoints(dataset_dicts, min_keypoints)
return dataset_dicts
class MultiDatasetSampler(Sampler):
def __init__(
self,
dataset_dicts,
dataset_ratio,
seed: Optional[int] = None,
):
sizes = [0 for _ in range(len(dataset_ratio))]
for d in dataset_dicts:
sizes[d['dataset_source']] += 1
print('dataset sizes', sizes)
self.sizes = sizes
assert len(dataset_ratio) == len(sizes), \
'length of dataset ratio {} should be equal to number if dataset {}'.format(
len(dataset_ratio), len(sizes)
)
if seed is None:
seed = comm.shared_random_seed()
self._seed = int(seed)
self._rank = comm.get_rank()
self._world_size = comm.get_world_size()
self.dataset_ids = torch.tensor(
[d['dataset_source'] for d in dataset_dicts], dtype=torch.long)
self.dataset_ratio = dataset_ratio
dataset_weight = [torch.ones(s) * max(sizes) / s * r / sum(dataset_ratio) \
for i, (r, s) in enumerate(zip(dataset_ratio, sizes))]
dataset_weight = torch.cat(dataset_weight)
self.weights = dataset_weight
self.sample_epoch_size = len(self.weights)
def __iter__(self):
start = self._rank
yield from itertools.islice(
self._infinite_indices(), start, None, self._world_size)
def _infinite_indices(self):
g = torch.Generator()
g.manual_seed(self._seed)
while True:
if len(self.dataset_ratio) > 1:
# multiple datasets
ids = torch.multinomial(
self.weights, self.sample_epoch_size, generator=g,
replacement=True)
nums = [(self.dataset_ids[ids] == i).sum().int().item() \
for i in range(len(self.sizes))]
yield from ids
else:
# single dataset
yield from torch.randperm(self.sizes[0], generator=g).tolist()
class SingleDataset(torch.utils.data.IterableDataset):
def __init__(self, dataset, batch_sizes):
self.dataset = dataset
self.batch_sizes = batch_sizes
self._buckets = [[] for _ in range(2)]
def __iter__(self):
for d in self.dataset:
w, h = d["width"], d["height"]
aspect_ratio_bucket_id = 0 if w > h else 1
bucket_id = aspect_ratio_bucket_id
bucket = self._buckets[bucket_id]
bucket.append(d)
if len(bucket) == self.batch_sizes:
yield bucket[:]
del bucket[:]
class MultiDatasets(torch.utils.data.IterableDataset):
def __init__(self, dataset, batch_sizes, num_datasets):
self.dataset = dataset
self.batch_sizes = batch_sizes
self._buckets = [[] for _ in range(2 * num_datasets)]
self.iter_idx = 0
self.num_datasets = num_datasets
def __iter__(self):
for d in self.dataset:
w, h = d["width"], d["height"]
aspect_ratio_bucket_id = 0 if w > h else 1
bucket_id = d['dataset_source'] * 2 + aspect_ratio_bucket_id
bucket = self._buckets[bucket_id]
if len(bucket) < self.batch_sizes:
bucket.append(d)
selected_dataset = self.iter_idx % self.num_datasets
if len(bucket) == self.batch_sizes and selected_dataset == d['dataset_source']:
self.iter_idx += 1
yield bucket[:]
del bucket[:] |