Inference Endpoints
File size: 7,464 Bytes
a567fa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright (c) Facebook, Inc. and its affiliates.

import json
import math
import os
import tempfile
import time
import unittest
from unittest import mock
import torch
from fvcore.common.checkpoint import Checkpointer
from torch import nn

from detectron2 import model_zoo
from detectron2.config import configurable, get_cfg
from detectron2.engine import DefaultTrainer, SimpleTrainer, default_setup, hooks
from detectron2.modeling.meta_arch import META_ARCH_REGISTRY
from detectron2.utils.events import CommonMetricPrinter, JSONWriter


@META_ARCH_REGISTRY.register()
class _SimpleModel(nn.Module):
    @configurable
    def __init__(self, sleep_sec=0):
        super().__init__()
        self.mod = nn.Linear(10, 20)
        self.sleep_sec = sleep_sec

    @classmethod
    def from_config(cls, cfg):
        return {}

    def forward(self, x):
        if self.sleep_sec > 0:
            time.sleep(self.sleep_sec)
        return {"loss": x.sum() + sum([x.mean() for x in self.parameters()])}


class TestTrainer(unittest.TestCase):
    def _data_loader(self, device):
        device = torch.device(device)
        while True:
            yield torch.rand(3, 3).to(device)

    def test_simple_trainer(self, device="cpu"):
        model = _SimpleModel().to(device=device)
        trainer = SimpleTrainer(
            model, self._data_loader(device), torch.optim.SGD(model.parameters(), 0.1)
        )
        trainer.train(0, 10)

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
    def test_simple_trainer_cuda(self):
        self.test_simple_trainer(device="cuda")

    def test_writer_hooks(self):
        model = _SimpleModel(sleep_sec=0.1)
        trainer = SimpleTrainer(
            model, self._data_loader("cpu"), torch.optim.SGD(model.parameters(), 0.1)
        )

        max_iter = 50

        with tempfile.TemporaryDirectory(prefix="detectron2_test") as d:
            json_file = os.path.join(d, "metrics.json")
            writers = [CommonMetricPrinter(max_iter), JSONWriter(json_file)]

            trainer.register_hooks(
                [hooks.EvalHook(0, lambda: {"metric": 100}), hooks.PeriodicWriter(writers)]
            )
            with self.assertLogs(writers[0].logger) as logs:
                trainer.train(0, max_iter)

            with open(json_file, "r") as f:
                data = [json.loads(line.strip()) for line in f]
                self.assertEqual([x["iteration"] for x in data], [19, 39, 49, 50])
                # the eval metric is in the last line with iter 50
                self.assertIn("metric", data[-1], "Eval metric must be in last line of JSON!")

            # test logged messages from CommonMetricPrinter
            self.assertEqual(len(logs.output), 3)
            for log, iter in zip(logs.output, [19, 39, 49]):
                self.assertIn(f"iter: {iter}", log)

            self.assertIn("eta: 0:00:00", logs.output[-1], "Last ETA must be 0!")

    def test_default_trainer(self):
        # TODO: this test requires manifold access, so changed device to CPU. see: T88318502
        cfg = get_cfg()
        cfg.MODEL.DEVICE = "cpu"
        cfg.MODEL.META_ARCHITECTURE = "_SimpleModel"
        cfg.DATASETS.TRAIN = ("coco_2017_val_100",)
        with tempfile.TemporaryDirectory(prefix="detectron2_test") as d:
            cfg.OUTPUT_DIR = d
            trainer = DefaultTrainer(cfg)

            # test property
            self.assertIs(trainer.model, trainer._trainer.model)
            trainer.model = _SimpleModel()
            self.assertIs(trainer.model, trainer._trainer.model)

    def test_checkpoint_resume(self):
        model = _SimpleModel()
        dataloader = self._data_loader("cpu")
        opt = torch.optim.SGD(model.parameters(), 0.1)
        scheduler = torch.optim.lr_scheduler.StepLR(opt, 3)

        with tempfile.TemporaryDirectory(prefix="detectron2_test") as d:
            trainer = SimpleTrainer(model, dataloader, opt)
            checkpointer = Checkpointer(model, d, opt=opt, trainer=trainer)

            trainer.register_hooks(
                [
                    hooks.LRScheduler(scheduler=scheduler),
                    # checkpoint after scheduler to properly save the state of scheduler
                    hooks.PeriodicCheckpointer(checkpointer, 10),
                ]
            )

            trainer.train(0, 12)
            self.assertAlmostEqual(opt.param_groups[0]["lr"], 1e-5)
            self.assertEqual(scheduler.last_epoch, 12)
            del trainer

            opt = torch.optim.SGD(model.parameters(), 999)  # lr will be loaded
            trainer = SimpleTrainer(model, dataloader, opt)
            scheduler = torch.optim.lr_scheduler.StepLR(opt, 3)
            trainer.register_hooks(
                [
                    hooks.LRScheduler(scheduler=scheduler),
                ]
            )
            checkpointer = Checkpointer(model, d, opt=opt, trainer=trainer)
            checkpointer.resume_or_load("non_exist.pth")
            self.assertEqual(trainer.iter, 11)  # last finished iter number (0-based in Trainer)
            # number of times `scheduler.step()` was called (1-based)
            self.assertEqual(scheduler.last_epoch, 12)
            self.assertAlmostEqual(opt.param_groups[0]["lr"], 1e-5)

    def test_eval_hook(self):
        model = _SimpleModel()
        dataloader = self._data_loader("cpu")
        opt = torch.optim.SGD(model.parameters(), 0.1)

        for total_iter, period, eval_count in [(30, 15, 2), (31, 15, 3), (20, 0, 1)]:
            test_func = mock.Mock(return_value={"metric": 3.0})
            trainer = SimpleTrainer(model, dataloader, opt)
            trainer.register_hooks([hooks.EvalHook(period, test_func)])
            trainer.train(0, total_iter)
            self.assertEqual(test_func.call_count, eval_count)

    def test_best_checkpointer(self):
        model = _SimpleModel()
        dataloader = self._data_loader("cpu")
        opt = torch.optim.SGD(model.parameters(), 0.1)
        metric_name = "metric"
        total_iter = 40
        test_period = 10
        test_cases = [
            ("max", iter([0.3, 0.4, 0.35, 0.5]), 3),
            ("min", iter([1.0, 0.8, 0.9, 0.9]), 2),
            ("min", iter([math.nan, 0.8, 0.9, 0.9]), 1),
        ]
        for mode, metrics, call_count in test_cases:
            trainer = SimpleTrainer(model, dataloader, opt)
            with tempfile.TemporaryDirectory(prefix="detectron2_test") as d:
                checkpointer = Checkpointer(model, d, opt=opt, trainer=trainer)
                trainer.register_hooks(
                    [
                        hooks.EvalHook(test_period, lambda: {metric_name: next(metrics)}),
                        hooks.BestCheckpointer(test_period, checkpointer, metric_name, mode=mode),
                    ]
                )
                with mock.patch.object(checkpointer, "save") as mock_save_method:
                    trainer.train(0, total_iter)
                    self.assertEqual(mock_save_method.call_count, call_count)

    def test_setup_config(self):
        with tempfile.TemporaryDirectory(prefix="detectron2_test") as d:
            cfg = get_cfg()
            cfg.OUTPUT_DIR = os.path.join(d, "yacs")
            default_setup(cfg, {})

            cfg = model_zoo.get_config("COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.py")
            cfg.train.output_dir = os.path.join(d, "omegaconf")
            default_setup(cfg, {})