File size: 10,457 Bytes
a567fa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
import os
import tempfile
import unittest
import cv2
import torch
from detectron2.data import MetadataCatalog
from detectron2.structures import BoxMode, Instances, RotatedBoxes
from detectron2.utils.visualizer import ColorMode, Visualizer
class TestVisualizer(unittest.TestCase):
def _random_data(self):
H, W = 100, 100
N = 10
img = np.random.rand(H, W, 3) * 255
boxxy = np.random.rand(N, 2) * (H // 2)
boxes = np.concatenate((boxxy, boxxy + H // 2), axis=1)
def _rand_poly():
return np.random.rand(3, 2).flatten() * H
polygons = [[_rand_poly() for _ in range(np.random.randint(1, 5))] for _ in range(N)]
mask = np.zeros_like(img[:, :, 0], dtype=np.bool)
mask[:40, 10:20] = 1
labels = [str(i) for i in range(N)]
return img, boxes, labels, polygons, [mask] * N
@property
def metadata(self):
return MetadataCatalog.get("coco_2017_train")
def test_draw_dataset_dict(self):
img = np.random.rand(512, 512, 3) * 255
dic = {
"annotations": [
{
"bbox": [
368.9946492271106,
330.891438763377,
13.148537455410235,
13.644708680142685,
],
"bbox_mode": BoxMode.XYWH_ABS,
"category_id": 0,
"iscrowd": 1,
"segmentation": {
"counts": "_jh52m?2N2N2N2O100O10O001N1O2MceP2",
"size": [512, 512],
},
}
],
"height": 512,
"image_id": 1,
"width": 512,
}
v = Visualizer(img)
v.draw_dataset_dict(dic)
v = Visualizer(img, self.metadata)
v.draw_dataset_dict(dic)
def test_draw_rotated_dataset_dict(self):
img = np.random.rand(512, 512, 3) * 255
dic = {
"annotations": [
{
"bbox": [
368.9946492271106,
330.891438763377,
13.148537455410235,
13.644708680142685,
45.0,
],
"bbox_mode": BoxMode.XYWHA_ABS,
"category_id": 0,
"iscrowd": 1,
}
],
"height": 512,
"image_id": 1,
"width": 512,
}
v = Visualizer(img, self.metadata)
v.draw_dataset_dict(dic)
def test_overlay_instances(self):
img, boxes, labels, polygons, masks = self._random_data()
v = Visualizer(img, self.metadata)
output = v.overlay_instances(masks=polygons, boxes=boxes, labels=labels).get_image()
self.assertEqual(output.shape, img.shape)
# Test 2x scaling
v = Visualizer(img, self.metadata, scale=2.0)
output = v.overlay_instances(masks=polygons, boxes=boxes, labels=labels).get_image()
self.assertEqual(output.shape[0], img.shape[0] * 2)
# Test overlay masks
v = Visualizer(img, self.metadata)
output = v.overlay_instances(masks=masks, boxes=boxes, labels=labels).get_image()
self.assertEqual(output.shape, img.shape)
def test_overlay_instances_no_boxes(self):
img, boxes, labels, polygons, _ = self._random_data()
v = Visualizer(img, self.metadata)
v.overlay_instances(masks=polygons, boxes=None, labels=labels).get_image()
def test_draw_instance_predictions(self):
img, boxes, _, _, masks = self._random_data()
num_inst = len(boxes)
inst = Instances((img.shape[0], img.shape[1]))
inst.pred_classes = torch.randint(0, 80, size=(num_inst,))
inst.scores = torch.rand(num_inst)
inst.pred_boxes = torch.from_numpy(boxes)
inst.pred_masks = torch.from_numpy(np.asarray(masks))
v = Visualizer(img)
v.draw_instance_predictions(inst)
v = Visualizer(img, self.metadata)
v.draw_instance_predictions(inst)
def test_BWmode_nomask(self):
img, boxes, _, _, masks = self._random_data()
num_inst = len(boxes)
inst = Instances((img.shape[0], img.shape[1]))
inst.pred_classes = torch.randint(0, 80, size=(num_inst,))
inst.scores = torch.rand(num_inst)
inst.pred_boxes = torch.from_numpy(boxes)
v = Visualizer(img, self.metadata, instance_mode=ColorMode.IMAGE_BW)
v.draw_instance_predictions(inst)
# check that output is grayscale
inst = inst[:0]
v = Visualizer(img, self.metadata, instance_mode=ColorMode.IMAGE_BW)
output = v.draw_instance_predictions(inst).get_image()
self.assertTrue(np.allclose(output[:, :, 0], output[:, :, 1]))
self.assertTrue(np.allclose(output[:, :, 0], output[:, :, 2]))
def test_draw_empty_mask_predictions(self):
img, boxes, _, _, masks = self._random_data()
num_inst = len(boxes)
inst = Instances((img.shape[0], img.shape[1]))
inst.pred_classes = torch.randint(0, 80, size=(num_inst,))
inst.scores = torch.rand(num_inst)
inst.pred_boxes = torch.from_numpy(boxes)
inst.pred_masks = torch.from_numpy(np.zeros_like(np.asarray(masks)))
v = Visualizer(img, self.metadata)
v.draw_instance_predictions(inst)
def test_correct_output_shape(self):
img = np.random.rand(928, 928, 3) * 255
v = Visualizer(img, self.metadata)
out = v.output.get_image()
self.assertEqual(out.shape, img.shape)
def test_overlay_rotated_instances(self):
H, W = 100, 150
img = np.random.rand(H, W, 3) * 255
num_boxes = 50
boxes_5d = torch.zeros(num_boxes, 5)
boxes_5d[:, 0] = torch.FloatTensor(num_boxes).uniform_(-0.1 * W, 1.1 * W)
boxes_5d[:, 1] = torch.FloatTensor(num_boxes).uniform_(-0.1 * H, 1.1 * H)
boxes_5d[:, 2] = torch.FloatTensor(num_boxes).uniform_(0, max(W, H))
boxes_5d[:, 3] = torch.FloatTensor(num_boxes).uniform_(0, max(W, H))
boxes_5d[:, 4] = torch.FloatTensor(num_boxes).uniform_(-1800, 1800)
rotated_boxes = RotatedBoxes(boxes_5d)
labels = [str(i) for i in range(num_boxes)]
v = Visualizer(img, self.metadata)
output = v.overlay_instances(boxes=rotated_boxes, labels=labels).get_image()
self.assertEqual(output.shape, img.shape)
def test_draw_no_metadata(self):
img, boxes, _, _, masks = self._random_data()
num_inst = len(boxes)
inst = Instances((img.shape[0], img.shape[1]))
inst.pred_classes = torch.randint(0, 80, size=(num_inst,))
inst.scores = torch.rand(num_inst)
inst.pred_boxes = torch.from_numpy(boxes)
inst.pred_masks = torch.from_numpy(np.asarray(masks))
v = Visualizer(img, MetadataCatalog.get("asdfasdf"))
v.draw_instance_predictions(inst)
def test_draw_binary_mask(self):
img, boxes, _, _, masks = self._random_data()
img[:, :, 0] = 0 # remove red color
mask = masks[0]
mask_with_hole = np.zeros_like(mask).astype("uint8")
mask_with_hole = cv2.rectangle(mask_with_hole, (10, 10), (50, 50), 1, 5)
for m in [mask, mask_with_hole]:
for save in [True, False]:
v = Visualizer(img)
o = v.draw_binary_mask(m, color="red", text="test")
if save:
with tempfile.TemporaryDirectory(prefix="detectron2_viz") as d:
path = os.path.join(d, "output.png")
o.save(path)
o = cv2.imread(path)[:, :, ::-1]
else:
o = o.get_image().astype("float32")
# red color is drawn on the image
self.assertTrue(o[:, :, 0].sum() > 0)
def test_draw_soft_mask(self):
img = np.random.rand(100, 100, 3) * 255
img[:, :, 0] = 0 # remove red color
mask = np.zeros((100, 100), dtype=np.float32)
mask[30:50, 40:50] = 1.0
cv2.GaussianBlur(mask, (21, 21), 10)
v = Visualizer(img)
o = v.draw_soft_mask(mask, color="red", text="test")
o = o.get_image().astype("float32")
# red color is drawn on the image
self.assertTrue(o[:, :, 0].sum() > 0)
# test draw empty mask
v = Visualizer(img)
o = v.draw_soft_mask(np.zeros((100, 100), dtype=np.float32), color="red", text="test")
o = o.get_image().astype("float32")
def test_border_mask_with_holes(self):
H, W = 200, 200
img = np.zeros((H, W, 3))
img[:, :, 0] = 255.0
v = Visualizer(img, scale=3)
mask = np.zeros((H, W))
mask[:, 100:150] = 1
# create a hole, to trigger imshow
mask = cv2.rectangle(mask, (110, 110), (130, 130), 0, thickness=-1)
output = v.draw_binary_mask(mask, color="blue")
output = output.get_image()[:, :, ::-1]
first_row = {tuple(x.tolist()) for x in output[0]}
last_row = {tuple(x.tolist()) for x in output[-1]}
# Check quantization / off-by-1 error: the first and last row must have two colors
self.assertEqual(len(last_row), 2)
self.assertEqual(len(first_row), 2)
self.assertIn((0, 0, 255), last_row)
self.assertIn((0, 0, 255), first_row)
def test_border_polygons(self):
H, W = 200, 200
img = np.zeros((H, W, 3))
img[:, :, 0] = 255.0
v = Visualizer(img, scale=3)
mask = np.zeros((H, W))
mask[:, 100:150] = 1
output = v.draw_binary_mask(mask, color="blue")
output = output.get_image()[:, :, ::-1]
first_row = {tuple(x.tolist()) for x in output[0]}
last_row = {tuple(x.tolist()) for x in output[-1]}
# Check quantization / off-by-1 error:
# the first and last row must have >=2 colors, because the polygon
# touches both rows
self.assertGreaterEqual(len(last_row), 2)
self.assertGreaterEqual(len(first_row), 2)
self.assertIn((0, 0, 255), last_row)
self.assertIn((0, 0, 255), first_row)
if __name__ == "__main__":
unittest.main()
|