File size: 9,243 Bytes
a567fa4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates.
import argparse
import os
from typing import Dict, List, Tuple
import torch
from torch import Tensor, nn
import detectron2.data.transforms as T
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import build_detection_test_loader, detection_utils
from detectron2.evaluation import COCOEvaluator, inference_on_dataset, print_csv_format
from detectron2.export import TracingAdapter, dump_torchscript_IR, scripting_with_instances
from detectron2.modeling import GeneralizedRCNN, RetinaNet, build_model
from detectron2.modeling.postprocessing import detector_postprocess
from detectron2.projects.point_rend import add_pointrend_config
from detectron2.structures import Boxes
from detectron2.utils.env import TORCH_VERSION
from detectron2.utils.file_io import PathManager
from detectron2.utils.logger import setup_logger
def setup_cfg(args):
cfg = get_cfg()
# cuda context is initialized before creating dataloader, so we don't fork anymore
cfg.DATALOADER.NUM_WORKERS = 0
add_pointrend_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
return cfg
def export_caffe2_tracing(cfg, torch_model, inputs):
from detectron2.export import Caffe2Tracer
tracer = Caffe2Tracer(cfg, torch_model, inputs)
if args.format == "caffe2":
caffe2_model = tracer.export_caffe2()
caffe2_model.save_protobuf(args.output)
# draw the caffe2 graph
caffe2_model.save_graph(os.path.join(args.output, "model.svg"), inputs=inputs)
return caffe2_model
elif args.format == "onnx":
import onnx
onnx_model = tracer.export_onnx()
onnx.save(onnx_model, os.path.join(args.output, "model.onnx"))
elif args.format == "torchscript":
ts_model = tracer.export_torchscript()
with PathManager.open(os.path.join(args.output, "model.ts"), "wb") as f:
torch.jit.save(ts_model, f)
dump_torchscript_IR(ts_model, args.output)
# experimental. API not yet final
def export_scripting(torch_model):
assert TORCH_VERSION >= (1, 8)
fields = {
"proposal_boxes": Boxes,
"objectness_logits": Tensor,
"pred_boxes": Boxes,
"scores": Tensor,
"pred_classes": Tensor,
"pred_masks": Tensor,
"pred_keypoints": torch.Tensor,
"pred_keypoint_heatmaps": torch.Tensor,
}
assert args.format == "torchscript", "Scripting only supports torchscript format."
class ScriptableAdapterBase(nn.Module):
# Use this adapter to workaround https://github.com/pytorch/pytorch/issues/46944
# by not retuning instances but dicts. Otherwise the exported model is not deployable
def __init__(self):
super().__init__()
self.model = torch_model
self.eval()
if isinstance(torch_model, GeneralizedRCNN):
class ScriptableAdapter(ScriptableAdapterBase):
def forward(self, inputs: Tuple[Dict[str, torch.Tensor]]) -> List[Dict[str, Tensor]]:
instances = self.model.inference(inputs, do_postprocess=False)
return [i.get_fields() for i in instances]
else:
class ScriptableAdapter(ScriptableAdapterBase):
def forward(self, inputs: Tuple[Dict[str, torch.Tensor]]) -> List[Dict[str, Tensor]]:
instances = self.model(inputs)
return [i.get_fields() for i in instances]
ts_model = scripting_with_instances(ScriptableAdapter(), fields)
with PathManager.open(os.path.join(args.output, "model.ts"), "wb") as f:
torch.jit.save(ts_model, f)
dump_torchscript_IR(ts_model, args.output)
# TODO inference in Python now missing postprocessing glue code
return None
# experimental. API not yet final
def export_tracing(torch_model, inputs):
assert TORCH_VERSION >= (1, 8)
image = inputs[0]["image"]
inputs = [{"image": image}] # remove other unused keys
if isinstance(torch_model, GeneralizedRCNN):
def inference(model, inputs):
# use do_postprocess=False so it returns ROI mask
inst = model.inference(inputs, do_postprocess=False)[0]
return [{"instances": inst}]
else:
inference = None # assume that we just call the model directly
traceable_model = TracingAdapter(torch_model, inputs, inference)
if args.format == "torchscript":
ts_model = torch.jit.trace(traceable_model, (image,))
with PathManager.open(os.path.join(args.output, "model.ts"), "wb") as f:
torch.jit.save(ts_model, f)
dump_torchscript_IR(ts_model, args.output)
elif args.format == "onnx":
with PathManager.open(os.path.join(args.output, "model.onnx"), "wb") as f:
torch.onnx.export(traceable_model, (image,), f, opset_version=11)
logger.info("Inputs schema: " + str(traceable_model.inputs_schema))
logger.info("Outputs schema: " + str(traceable_model.outputs_schema))
if args.format != "torchscript":
return None
if not isinstance(torch_model, (GeneralizedRCNN, RetinaNet)):
return None
def eval_wrapper(inputs):
"""
The exported model does not contain the final resize step, which is typically
unused in deployment but needed for evaluation. We add it manually here.
"""
input = inputs[0]
instances = traceable_model.outputs_schema(ts_model(input["image"]))[0]["instances"]
postprocessed = detector_postprocess(instances, input["height"], input["width"])
return [{"instances": postprocessed}]
return eval_wrapper
def get_sample_inputs(args):
if args.sample_image is None:
# get a first batch from dataset
data_loader = build_detection_test_loader(cfg, cfg.DATASETS.TEST[0])
first_batch = next(iter(data_loader))
return first_batch
else:
# get a sample data
original_image = detection_utils.read_image(args.sample_image, format=cfg.INPUT.FORMAT)
# Do same preprocessing as DefaultPredictor
aug = T.ResizeShortestEdge(
[cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST], cfg.INPUT.MAX_SIZE_TEST
)
height, width = original_image.shape[:2]
image = aug.get_transform(original_image).apply_image(original_image)
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1))
inputs = {"image": image, "height": height, "width": width}
# Sample ready
sample_inputs = [inputs]
return sample_inputs
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Export a model for deployment.")
parser.add_argument(
"--format",
choices=["caffe2", "onnx", "torchscript"],
help="output format",
default="torchscript",
)
parser.add_argument(
"--export-method",
choices=["caffe2_tracing", "tracing", "scripting"],
help="Method to export models",
default="tracing",
)
parser.add_argument("--config-file", default="", metavar="FILE", help="path to config file")
parser.add_argument("--sample-image", default=None, type=str, help="sample image for input")
parser.add_argument("--run-eval", action="store_true")
parser.add_argument("--output", help="output directory for the converted model")
parser.add_argument(
"opts",
help="Modify config options using the command-line",
default=None,
nargs=argparse.REMAINDER,
)
args = parser.parse_args()
logger = setup_logger()
logger.info("Command line arguments: " + str(args))
PathManager.mkdirs(args.output)
# Disable respecialization on new shapes. Otherwise --run-eval will be slow
torch._C._jit_set_bailout_depth(1)
cfg = setup_cfg(args)
# create a torch model
torch_model = build_model(cfg)
DetectionCheckpointer(torch_model).resume_or_load(cfg.MODEL.WEIGHTS)
torch_model.eval()
# get sample data
sample_inputs = get_sample_inputs(args)
# convert and save model
if args.export_method == "caffe2_tracing":
exported_model = export_caffe2_tracing(cfg, torch_model, sample_inputs)
elif args.export_method == "scripting":
exported_model = export_scripting(torch_model)
elif args.export_method == "tracing":
exported_model = export_tracing(torch_model, sample_inputs)
# run evaluation with the converted model
if args.run_eval:
assert exported_model is not None, (
"Python inference is not yet implemented for "
f"export_method={args.export_method}, format={args.format}."
)
logger.info("Running evaluation ... this takes a long time if you export to CPU.")
dataset = cfg.DATASETS.TEST[0]
data_loader = build_detection_test_loader(cfg, dataset)
# NOTE: hard-coded evaluator. change to the evaluator for your dataset
evaluator = COCOEvaluator(dataset, output_dir=args.output)
metrics = inference_on_dataset(exported_model, data_loader, evaluator)
print_csv_format(metrics)
|