Inference Endpoints
File size: 7,894 Bytes
a567fa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
#!/usr/bin/env python
# Copyright (c) Facebook, Inc. and its affiliates.
"""
Detectron2 training script with a plain training loop.

This script reads a given config file and runs the training or evaluation.
It is an entry point that is able to train standard models in detectron2.

In order to let one script support training of many models,
this script contains logic that are specific to these built-in models and therefore
may not be suitable for your own project.
For example, your research project perhaps only needs a single "evaluator".

Therefore, we recommend you to use detectron2 as a library and take
this file as an example of how to use the library.
You may want to write your own script with your datasets and other customizations.

Compared to "train_net.py", this script supports fewer default features.
It also includes fewer abstraction, therefore is easier to add custom logic.
"""

import logging
import os
from collections import OrderedDict
import torch
from torch.nn.parallel import DistributedDataParallel

import detectron2.utils.comm as comm
from detectron2.checkpoint import DetectionCheckpointer, PeriodicCheckpointer
from detectron2.config import get_cfg
from detectron2.data import (
    MetadataCatalog,
    build_detection_test_loader,
    build_detection_train_loader,
)
from detectron2.engine import default_argument_parser, default_setup, default_writers, launch
from detectron2.evaluation import (
    CityscapesInstanceEvaluator,
    CityscapesSemSegEvaluator,
    COCOEvaluator,
    COCOPanopticEvaluator,
    DatasetEvaluators,
    LVISEvaluator,
    PascalVOCDetectionEvaluator,
    SemSegEvaluator,
    inference_on_dataset,
    print_csv_format,
)
from detectron2.modeling import build_model
from detectron2.solver import build_lr_scheduler, build_optimizer
from detectron2.utils.events import EventStorage

logger = logging.getLogger("detectron2")


def get_evaluator(cfg, dataset_name, output_folder=None):
    """
    Create evaluator(s) for a given dataset.
    This uses the special metadata "evaluator_type" associated with each builtin dataset.
    For your own dataset, you can simply create an evaluator manually in your
    script and do not have to worry about the hacky if-else logic here.
    """
    if output_folder is None:
        output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
    evaluator_list = []
    evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
    if evaluator_type in ["sem_seg", "coco_panoptic_seg"]:
        evaluator_list.append(
            SemSegEvaluator(
                dataset_name,
                distributed=True,
                output_dir=output_folder,
            )
        )
    if evaluator_type in ["coco", "coco_panoptic_seg"]:
        evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
    if evaluator_type == "coco_panoptic_seg":
        evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
    if evaluator_type == "cityscapes_instance":
        return CityscapesInstanceEvaluator(dataset_name)
    if evaluator_type == "cityscapes_sem_seg":
        return CityscapesSemSegEvaluator(dataset_name)
    if evaluator_type == "pascal_voc":
        return PascalVOCDetectionEvaluator(dataset_name)
    if evaluator_type == "lvis":
        return LVISEvaluator(dataset_name, cfg, True, output_folder)
    if len(evaluator_list) == 0:
        raise NotImplementedError(
            "no Evaluator for the dataset {} with the type {}".format(dataset_name, evaluator_type)
        )
    if len(evaluator_list) == 1:
        return evaluator_list[0]
    return DatasetEvaluators(evaluator_list)


def do_test(cfg, model):
    results = OrderedDict()
    for dataset_name in cfg.DATASETS.TEST:
        data_loader = build_detection_test_loader(cfg, dataset_name)
        evaluator = get_evaluator(
            cfg, dataset_name, os.path.join(cfg.OUTPUT_DIR, "inference", dataset_name)
        )
        results_i = inference_on_dataset(model, data_loader, evaluator)
        results[dataset_name] = results_i
        if comm.is_main_process():
            logger.info("Evaluation results for {} in csv format:".format(dataset_name))
            print_csv_format(results_i)
    if len(results) == 1:
        results = list(results.values())[0]
    return results


def do_train(cfg, model, resume=False):
    model.train()
    optimizer = build_optimizer(cfg, model)
    scheduler = build_lr_scheduler(cfg, optimizer)

    checkpointer = DetectionCheckpointer(
        model, cfg.OUTPUT_DIR, optimizer=optimizer, scheduler=scheduler
    )
    start_iter = (
        checkpointer.resume_or_load(cfg.MODEL.WEIGHTS, resume=resume).get("iteration", -1) + 1
    )
    max_iter = cfg.SOLVER.MAX_ITER

    periodic_checkpointer = PeriodicCheckpointer(
        checkpointer, cfg.SOLVER.CHECKPOINT_PERIOD, max_iter=max_iter
    )

    writers = default_writers(cfg.OUTPUT_DIR, max_iter) if comm.is_main_process() else []

    # compared to "train_net.py", we do not support accurate timing and
    # precise BN here, because they are not trivial to implement in a small training loop
    data_loader = build_detection_train_loader(cfg)
    logger.info("Starting training from iteration {}".format(start_iter))
    with EventStorage(start_iter) as storage:
        for data, iteration in zip(data_loader, range(start_iter, max_iter)):
            storage.iter = iteration

            loss_dict = model(data)
            losses = sum(loss_dict.values())
            assert torch.isfinite(losses).all(), loss_dict

            loss_dict_reduced = {k: v.item() for k, v in comm.reduce_dict(loss_dict).items()}
            losses_reduced = sum(loss for loss in loss_dict_reduced.values())
            if comm.is_main_process():
                storage.put_scalars(total_loss=losses_reduced, **loss_dict_reduced)

            optimizer.zero_grad()
            losses.backward()
            optimizer.step()
            storage.put_scalar("lr", optimizer.param_groups[0]["lr"], smoothing_hint=False)
            scheduler.step()

            if (
                cfg.TEST.EVAL_PERIOD > 0
                and (iteration + 1) % cfg.TEST.EVAL_PERIOD == 0
                and iteration != max_iter - 1
            ):
                do_test(cfg, model)
                # Compared to "train_net.py", the test results are not dumped to EventStorage
                comm.synchronize()

            if iteration - start_iter > 5 and (
                (iteration + 1) % 20 == 0 or iteration == max_iter - 1
            ):
                for writer in writers:
                    writer.write()
            periodic_checkpointer.step(iteration)


def setup(args):
    """
    Create configs and perform basic setups.
    """
    cfg = get_cfg()
    cfg.merge_from_file(args.config_file)
    cfg.merge_from_list(args.opts)
    cfg.freeze()
    default_setup(
        cfg, args
    )  # if you don't like any of the default setup, write your own setup code
    return cfg


def main(args):
    cfg = setup(args)

    model = build_model(cfg)
    logger.info("Model:\n{}".format(model))
    if args.eval_only:
        DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(
            cfg.MODEL.WEIGHTS, resume=args.resume
        )
        return do_test(cfg, model)

    distributed = comm.get_world_size() > 1
    if distributed:
        model = DistributedDataParallel(
            model, device_ids=[comm.get_local_rank()], broadcast_buffers=False
        )

    do_train(cfg, model, resume=args.resume)
    return do_test(cfg, model)


if __name__ == "__main__":
    args = default_argument_parser().parse_args()
    print("Command Line Args:", args)
    launch(
        main,
        args.num_gpus,
        num_machines=args.num_machines,
        machine_rank=args.machine_rank,
        dist_url=args.dist_url,
        args=(args,),
    )