|
|
|
import logging |
|
import unittest |
|
import torch |
|
|
|
from detectron2.config import get_cfg |
|
from detectron2.layers import ShapeSpec |
|
from detectron2.modeling.anchor_generator import DefaultAnchorGenerator, RotatedAnchorGenerator |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class TestAnchorGenerator(unittest.TestCase): |
|
def test_default_anchor_generator(self): |
|
cfg = get_cfg() |
|
cfg.MODEL.ANCHOR_GENERATOR.SIZES = [[32, 64]] |
|
cfg.MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS = [[0.25, 1, 4]] |
|
|
|
anchor_generator = DefaultAnchorGenerator(cfg, [ShapeSpec(stride=4)]) |
|
|
|
|
|
num_images = 2 |
|
features = {"stage3": torch.rand(num_images, 96, 1, 2)} |
|
anchors = anchor_generator([features["stage3"]]) |
|
expected_anchor_tensor = torch.tensor( |
|
[ |
|
[-32.0, -8.0, 32.0, 8.0], |
|
[-16.0, -16.0, 16.0, 16.0], |
|
[-8.0, -32.0, 8.0, 32.0], |
|
[-64.0, -16.0, 64.0, 16.0], |
|
[-32.0, -32.0, 32.0, 32.0], |
|
[-16.0, -64.0, 16.0, 64.0], |
|
[-28.0, -8.0, 36.0, 8.0], |
|
[-12.0, -16.0, 20.0, 16.0], |
|
[-4.0, -32.0, 12.0, 32.0], |
|
[-60.0, -16.0, 68.0, 16.0], |
|
[-28.0, -32.0, 36.0, 32.0], |
|
[-12.0, -64.0, 20.0, 64.0], |
|
] |
|
) |
|
|
|
self.assertTrue(torch.allclose(anchors[0].tensor, expected_anchor_tensor)) |
|
|
|
def test_default_anchor_generator_centered(self): |
|
|
|
anchor_generator = DefaultAnchorGenerator( |
|
sizes=[32, 64], aspect_ratios=[0.25, 1, 4], strides=[4] |
|
) |
|
|
|
|
|
num_images = 2 |
|
features = {"stage3": torch.rand(num_images, 96, 1, 2)} |
|
expected_anchor_tensor = torch.tensor( |
|
[ |
|
[-30.0, -6.0, 34.0, 10.0], |
|
[-14.0, -14.0, 18.0, 18.0], |
|
[-6.0, -30.0, 10.0, 34.0], |
|
[-62.0, -14.0, 66.0, 18.0], |
|
[-30.0, -30.0, 34.0, 34.0], |
|
[-14.0, -62.0, 18.0, 66.0], |
|
[-26.0, -6.0, 38.0, 10.0], |
|
[-10.0, -14.0, 22.0, 18.0], |
|
[-2.0, -30.0, 14.0, 34.0], |
|
[-58.0, -14.0, 70.0, 18.0], |
|
[-26.0, -30.0, 38.0, 34.0], |
|
[-10.0, -62.0, 22.0, 66.0], |
|
] |
|
) |
|
|
|
anchors = anchor_generator([features["stage3"]]) |
|
self.assertTrue(torch.allclose(anchors[0].tensor, expected_anchor_tensor)) |
|
|
|
anchors = torch.jit.script(anchor_generator)([features["stage3"]]) |
|
self.assertTrue(torch.allclose(anchors[0].tensor, expected_anchor_tensor)) |
|
|
|
def test_rrpn_anchor_generator(self): |
|
cfg = get_cfg() |
|
cfg.MODEL.ANCHOR_GENERATOR.SIZES = [[32, 64]] |
|
cfg.MODEL.ANCHOR_GENERATOR.ASPECT_RATIOS = [[0.25, 1, 4]] |
|
cfg.MODEL.ANCHOR_GENERATOR.ANGLES = [0, 45] |
|
anchor_generator = RotatedAnchorGenerator(cfg, [ShapeSpec(stride=4)]) |
|
|
|
|
|
num_images = 2 |
|
features = {"stage3": torch.rand(num_images, 96, 1, 2)} |
|
anchors = anchor_generator([features["stage3"]]) |
|
expected_anchor_tensor = torch.tensor( |
|
[ |
|
[0.0, 0.0, 64.0, 16.0, 0.0], |
|
[0.0, 0.0, 64.0, 16.0, 45.0], |
|
[0.0, 0.0, 32.0, 32.0, 0.0], |
|
[0.0, 0.0, 32.0, 32.0, 45.0], |
|
[0.0, 0.0, 16.0, 64.0, 0.0], |
|
[0.0, 0.0, 16.0, 64.0, 45.0], |
|
[0.0, 0.0, 128.0, 32.0, 0.0], |
|
[0.0, 0.0, 128.0, 32.0, 45.0], |
|
[0.0, 0.0, 64.0, 64.0, 0.0], |
|
[0.0, 0.0, 64.0, 64.0, 45.0], |
|
[0.0, 0.0, 32.0, 128.0, 0.0], |
|
[0.0, 0.0, 32.0, 128.0, 45.0], |
|
[4.0, 0.0, 64.0, 16.0, 0.0], |
|
[4.0, 0.0, 64.0, 16.0, 45.0], |
|
[4.0, 0.0, 32.0, 32.0, 0.0], |
|
[4.0, 0.0, 32.0, 32.0, 45.0], |
|
[4.0, 0.0, 16.0, 64.0, 0.0], |
|
[4.0, 0.0, 16.0, 64.0, 45.0], |
|
[4.0, 0.0, 128.0, 32.0, 0.0], |
|
[4.0, 0.0, 128.0, 32.0, 45.0], |
|
[4.0, 0.0, 64.0, 64.0, 0.0], |
|
[4.0, 0.0, 64.0, 64.0, 45.0], |
|
[4.0, 0.0, 32.0, 128.0, 0.0], |
|
[4.0, 0.0, 32.0, 128.0, 45.0], |
|
] |
|
) |
|
|
|
self.assertTrue(torch.allclose(anchors[0].tensor, expected_anchor_tensor)) |
|
|
|
|
|
if __name__ == "__main__": |
|
unittest.main() |
|
|