Inference Endpoints
GRiT / detectron2 /tests /modeling /test_fast_rcnn.py
Vishakaraj's picture
Upload 1797 files
a567fa4
raw
history blame
7.04 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import logging
import unittest
import torch
from detectron2.layers import ShapeSpec
from detectron2.modeling.box_regression import Box2BoxTransform, Box2BoxTransformRotated
from detectron2.modeling.roi_heads.fast_rcnn import FastRCNNOutputLayers
from detectron2.modeling.roi_heads.rotated_fast_rcnn import RotatedFastRCNNOutputLayers
from detectron2.structures import Boxes, Instances, RotatedBoxes
from detectron2.utils.events import EventStorage
logger = logging.getLogger(__name__)
class FastRCNNTest(unittest.TestCase):
def test_fast_rcnn(self):
torch.manual_seed(132)
box_head_output_size = 8
box_predictor = FastRCNNOutputLayers(
ShapeSpec(channels=box_head_output_size),
box2box_transform=Box2BoxTransform(weights=(10, 10, 5, 5)),
num_classes=5,
)
feature_pooled = torch.rand(2, box_head_output_size)
predictions = box_predictor(feature_pooled)
proposal_boxes = torch.tensor([[0.8, 1.1, 3.2, 2.8], [2.3, 2.5, 7, 8]], dtype=torch.float32)
gt_boxes = torch.tensor([[1, 1, 3, 3], [2, 2, 6, 6]], dtype=torch.float32)
proposal = Instances((10, 10))
proposal.proposal_boxes = Boxes(proposal_boxes)
proposal.gt_boxes = Boxes(gt_boxes)
proposal.gt_classes = torch.tensor([1, 2])
with EventStorage(): # capture events in a new storage to discard them
losses = box_predictor.losses(predictions, [proposal])
expected_losses = {
"loss_cls": torch.tensor(1.7951188087),
"loss_box_reg": torch.tensor(4.0357131958),
}
for name in expected_losses.keys():
assert torch.allclose(losses[name], expected_losses[name])
def test_fast_rcnn_empty_batch(self, device="cpu"):
box_predictor = FastRCNNOutputLayers(
ShapeSpec(channels=10),
box2box_transform=Box2BoxTransform(weights=(10, 10, 5, 5)),
num_classes=8,
).to(device=device)
logits = torch.randn(0, 100, requires_grad=True, device=device)
deltas = torch.randn(0, 4, requires_grad=True, device=device)
losses = box_predictor.losses([logits, deltas], [])
for value in losses.values():
self.assertTrue(torch.allclose(value, torch.zeros_like(value)))
sum(losses.values()).backward()
self.assertTrue(logits.grad is not None)
self.assertTrue(deltas.grad is not None)
predictions, _ = box_predictor.inference([logits, deltas], [])
self.assertEqual(len(predictions), 0)
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not available")
def test_fast_rcnn_empty_batch_cuda(self):
self.test_fast_rcnn_empty_batch(device=torch.device("cuda"))
def test_fast_rcnn_rotated(self):
torch.manual_seed(132)
box_head_output_size = 8
box_predictor = RotatedFastRCNNOutputLayers(
ShapeSpec(channels=box_head_output_size),
box2box_transform=Box2BoxTransformRotated(weights=(10, 10, 5, 5, 1)),
num_classes=5,
)
feature_pooled = torch.rand(2, box_head_output_size)
predictions = box_predictor(feature_pooled)
proposal_boxes = torch.tensor(
[[2, 1.95, 2.4, 1.7, 0], [4.65, 5.25, 4.7, 5.5, 0]], dtype=torch.float32
)
gt_boxes = torch.tensor([[2, 2, 2, 2, 0], [4, 4, 4, 4, 0]], dtype=torch.float32)
proposal = Instances((10, 10))
proposal.proposal_boxes = RotatedBoxes(proposal_boxes)
proposal.gt_boxes = RotatedBoxes(gt_boxes)
proposal.gt_classes = torch.tensor([1, 2])
with EventStorage(): # capture events in a new storage to discard them
losses = box_predictor.losses(predictions, [proposal])
# Note: the expected losses are slightly different even if
# the boxes are essentially the same as in the FastRCNNOutput test, because
# bbox_pred in FastRCNNOutputLayers have different Linear layers/initialization
# between the two cases.
expected_losses = {
"loss_cls": torch.tensor(1.7920907736),
"loss_box_reg": torch.tensor(4.0410838127),
}
for name in expected_losses.keys():
assert torch.allclose(losses[name], expected_losses[name])
def test_predict_boxes_tracing(self):
class Model(torch.nn.Module):
def __init__(self, output_layer):
super(Model, self).__init__()
self._output_layer = output_layer
def forward(self, proposal_deltas, proposal_boxes):
instances = Instances((10, 10))
instances.proposal_boxes = Boxes(proposal_boxes)
return self._output_layer.predict_boxes((None, proposal_deltas), [instances])
box_head_output_size = 8
box_predictor = FastRCNNOutputLayers(
ShapeSpec(channels=box_head_output_size),
box2box_transform=Box2BoxTransform(weights=(10, 10, 5, 5)),
num_classes=5,
)
model = Model(box_predictor)
from detectron2.export.torchscript_patch import patch_builtin_len
with torch.no_grad(), patch_builtin_len():
func = torch.jit.trace(model, (torch.randn(10, 20), torch.randn(10, 4)))
o = func(torch.randn(10, 20), torch.randn(10, 4))
self.assertEqual(o[0].shape, (10, 20))
o = func(torch.randn(5, 20), torch.randn(5, 4))
self.assertEqual(o[0].shape, (5, 20))
o = func(torch.randn(20, 20), torch.randn(20, 4))
self.assertEqual(o[0].shape, (20, 20))
def test_predict_probs_tracing(self):
class Model(torch.nn.Module):
def __init__(self, output_layer):
super(Model, self).__init__()
self._output_layer = output_layer
def forward(self, scores, proposal_boxes):
instances = Instances((10, 10))
instances.proposal_boxes = Boxes(proposal_boxes)
return self._output_layer.predict_probs((scores, None), [instances])
box_head_output_size = 8
box_predictor = FastRCNNOutputLayers(
ShapeSpec(channels=box_head_output_size),
box2box_transform=Box2BoxTransform(weights=(10, 10, 5, 5)),
num_classes=5,
)
model = Model(box_predictor)
from detectron2.export.torchscript_patch import patch_builtin_len
with torch.no_grad(), patch_builtin_len():
func = torch.jit.trace(model, (torch.randn(10, 6), torch.rand(10, 4)))
o = func(torch.randn(10, 6), torch.randn(10, 4))
self.assertEqual(o[0].shape, (10, 6))
o = func(torch.randn(5, 6), torch.randn(5, 4))
self.assertEqual(o[0].shape, (5, 6))
o = func(torch.randn(20, 6), torch.randn(20, 4))
self.assertEqual(o[0].shape, (20, 6))
if __name__ == "__main__":
unittest.main()