|
|
|
import unittest |
|
from typing import List |
|
import torch |
|
|
|
from detectron2.config import get_cfg |
|
from detectron2.modeling.matcher import Matcher |
|
|
|
|
|
class TestMatcher(unittest.TestCase): |
|
def test_scriptability(self): |
|
cfg = get_cfg() |
|
anchor_matcher = Matcher( |
|
cfg.MODEL.RPN.IOU_THRESHOLDS, cfg.MODEL.RPN.IOU_LABELS, allow_low_quality_matches=True |
|
) |
|
match_quality_matrix = torch.tensor( |
|
[[0.15, 0.45, 0.2, 0.6], [0.3, 0.65, 0.05, 0.1], [0.05, 0.4, 0.25, 0.4]] |
|
) |
|
expected_matches = torch.tensor([1, 1, 2, 0]) |
|
expected_match_labels = torch.tensor([-1, 1, 0, 1], dtype=torch.int8) |
|
|
|
matches, match_labels = anchor_matcher(match_quality_matrix) |
|
self.assertTrue(torch.allclose(matches, expected_matches)) |
|
self.assertTrue(torch.allclose(match_labels, expected_match_labels)) |
|
|
|
|
|
|
|
from detectron2.layers import nonzero_tuple |
|
|
|
def f(thresholds: List[float], labels: List[int]): |
|
return Matcher(thresholds, labels, allow_low_quality_matches=True) |
|
|
|
scripted_anchor_matcher = torch.jit.script(f)( |
|
cfg.MODEL.RPN.IOU_THRESHOLDS, cfg.MODEL.RPN.IOU_LABELS |
|
) |
|
matches, match_labels = scripted_anchor_matcher(match_quality_matrix) |
|
self.assertTrue(torch.allclose(matches, expected_matches)) |
|
self.assertTrue(torch.allclose(match_labels, expected_match_labels)) |
|
|
|
|
|
if __name__ == "__main__": |
|
unittest.main() |
|
|