|
|
|
|
|
|
|
import itertools |
|
import unittest |
|
from contextlib import contextmanager |
|
from copy import deepcopy |
|
import torch |
|
|
|
from detectron2.structures import BitMasks, Boxes, ImageList, Instances |
|
from detectron2.utils.events import EventStorage |
|
from detectron2.utils.testing import get_model_no_weights |
|
|
|
|
|
@contextmanager |
|
def typecheck_hook(model, *, in_dtype=None, out_dtype=None): |
|
""" |
|
Check that the model must be called with the given input/output dtype |
|
""" |
|
if not isinstance(in_dtype, set): |
|
in_dtype = {in_dtype} |
|
if not isinstance(out_dtype, set): |
|
out_dtype = {out_dtype} |
|
|
|
def flatten(x): |
|
if isinstance(x, torch.Tensor): |
|
return [x] |
|
if isinstance(x, (list, tuple)): |
|
return list(itertools.chain(*[flatten(t) for t in x])) |
|
if isinstance(x, dict): |
|
return flatten(list(x.values())) |
|
return [] |
|
|
|
def hook(module, input, output): |
|
if in_dtype is not None: |
|
dtypes = {x.dtype for x in flatten(input)} |
|
assert ( |
|
dtypes == in_dtype |
|
), f"Expected input dtype of {type(module)} is {in_dtype}. Got {dtypes} instead!" |
|
|
|
if out_dtype is not None: |
|
dtypes = {x.dtype for x in flatten(output)} |
|
assert ( |
|
dtypes == out_dtype |
|
), f"Expected output dtype of {type(module)} is {out_dtype}. Got {dtypes} instead!" |
|
|
|
with model.register_forward_hook(hook): |
|
yield |
|
|
|
|
|
def create_model_input(img, inst=None): |
|
if inst is not None: |
|
return {"image": img, "instances": inst} |
|
else: |
|
return {"image": img} |
|
|
|
|
|
def get_empty_instance(h, w): |
|
inst = Instances((h, w)) |
|
inst.gt_boxes = Boxes(torch.rand(0, 4)) |
|
inst.gt_classes = torch.tensor([]).to(dtype=torch.int64) |
|
inst.gt_masks = BitMasks(torch.rand(0, h, w)) |
|
return inst |
|
|
|
|
|
def get_regular_bitmask_instances(h, w): |
|
inst = Instances((h, w)) |
|
inst.gt_boxes = Boxes(torch.rand(3, 4)) |
|
inst.gt_boxes.tensor[:, 2:] += inst.gt_boxes.tensor[:, :2] |
|
inst.gt_classes = torch.tensor([3, 4, 5]).to(dtype=torch.int64) |
|
inst.gt_masks = BitMasks((torch.rand(3, h, w) > 0.5)) |
|
return inst |
|
|
|
|
|
class InstanceModelE2ETest: |
|
def setUp(self): |
|
torch.manual_seed(43) |
|
self.model = get_model_no_weights(self.CONFIG_PATH) |
|
|
|
def _test_eval(self, input_sizes): |
|
inputs = [create_model_input(torch.rand(3, s[0], s[1])) for s in input_sizes] |
|
self.model.eval() |
|
self.model(inputs) |
|
|
|
def _test_train(self, input_sizes, instances): |
|
assert len(input_sizes) == len(instances) |
|
inputs = [ |
|
create_model_input(torch.rand(3, s[0], s[1]), inst) |
|
for s, inst in zip(input_sizes, instances) |
|
] |
|
self.model.train() |
|
with EventStorage(): |
|
losses = self.model(inputs) |
|
sum(losses.values()).backward() |
|
del losses |
|
|
|
def _inf_tensor(self, *shape): |
|
return 1.0 / torch.zeros(*shape, device=self.model.device) |
|
|
|
def _nan_tensor(self, *shape): |
|
return torch.zeros(*shape, device=self.model.device).fill_(float("nan")) |
|
|
|
def test_empty_data(self): |
|
instances = [get_empty_instance(200, 250), get_empty_instance(200, 249)] |
|
self._test_eval([(200, 250), (200, 249)]) |
|
self._test_train([(200, 250), (200, 249)], instances) |
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable") |
|
def test_eval_tocpu(self): |
|
model = deepcopy(self.model).cpu() |
|
model.eval() |
|
input_sizes = [(200, 250), (200, 249)] |
|
inputs = [create_model_input(torch.rand(3, s[0], s[1])) for s in input_sizes] |
|
model(inputs) |
|
|
|
|
|
class MaskRCNNE2ETest(InstanceModelE2ETest, unittest.TestCase): |
|
CONFIG_PATH = "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.yaml" |
|
|
|
def test_half_empty_data(self): |
|
instances = [get_empty_instance(200, 250), get_regular_bitmask_instances(200, 249)] |
|
self._test_train([(200, 250), (200, 249)], instances) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_roiheads_inf_nan_data(self): |
|
self.model.eval() |
|
for tensor in [self._inf_tensor, self._nan_tensor]: |
|
images = ImageList(tensor(1, 3, 512, 512), [(510, 510)]) |
|
features = { |
|
"p2": tensor(1, 256, 256, 256), |
|
"p3": tensor(1, 256, 128, 128), |
|
"p4": tensor(1, 256, 64, 64), |
|
"p5": tensor(1, 256, 32, 32), |
|
"p6": tensor(1, 256, 16, 16), |
|
} |
|
props = [Instances((510, 510))] |
|
props[0].proposal_boxes = Boxes([[10, 10, 20, 20]]).to(device=self.model.device) |
|
props[0].objectness_logits = torch.tensor([1.0]).reshape(1, 1) |
|
det, _ = self.model.roi_heads(images, features, props) |
|
self.assertEqual(len(det[0]), 0) |
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") |
|
def test_autocast(self): |
|
from torch.cuda.amp import autocast |
|
|
|
inputs = [{"image": torch.rand(3, 100, 100)}] |
|
self.model.eval() |
|
with autocast(), typecheck_hook( |
|
self.model.backbone, in_dtype=torch.float32, out_dtype=torch.float16 |
|
), typecheck_hook( |
|
self.model.roi_heads.box_predictor, in_dtype=torch.float16, out_dtype=torch.float16 |
|
): |
|
out = self.model.inference(inputs, do_postprocess=False)[0] |
|
self.assertEqual(out.pred_boxes.tensor.dtype, torch.float32) |
|
self.assertEqual(out.pred_masks.dtype, torch.float16) |
|
self.assertEqual(out.scores.dtype, torch.float32) |
|
|
|
|
|
class RetinaNetE2ETest(InstanceModelE2ETest, unittest.TestCase): |
|
CONFIG_PATH = "COCO-Detection/retinanet_R_50_FPN_1x.yaml" |
|
|
|
def test_inf_nan_data(self): |
|
self.model.eval() |
|
self.model.score_threshold = -999999999 |
|
for tensor in [self._inf_tensor, self._nan_tensor]: |
|
images = ImageList(tensor(1, 3, 512, 512), [(510, 510)]) |
|
features = [ |
|
tensor(1, 256, 128, 128), |
|
tensor(1, 256, 64, 64), |
|
tensor(1, 256, 32, 32), |
|
tensor(1, 256, 16, 16), |
|
tensor(1, 256, 8, 8), |
|
] |
|
pred_logits, pred_anchor_deltas = self.model.head(features) |
|
pred_logits = [tensor(*x.shape) for x in pred_logits] |
|
pred_anchor_deltas = [tensor(*x.shape) for x in pred_anchor_deltas] |
|
det = self.model.forward_inference(images, features, [pred_logits, pred_anchor_deltas]) |
|
|
|
if len(det[0]): |
|
self.assertTrue(torch.isfinite(det[0].pred_boxes.tensor).sum() == 0) |
|
|
|
@unittest.skipIf(not torch.cuda.is_available(), "CUDA not available") |
|
def test_autocast(self): |
|
from torch.cuda.amp import autocast |
|
|
|
inputs = [{"image": torch.rand(3, 100, 100)}] |
|
self.model.eval() |
|
with autocast(), typecheck_hook( |
|
self.model.backbone, in_dtype=torch.float32, out_dtype=torch.float16 |
|
), typecheck_hook(self.model.head, in_dtype=torch.float16, out_dtype=torch.float16): |
|
out = self.model(inputs)[0]["instances"] |
|
self.assertEqual(out.pred_boxes.tensor.dtype, torch.float32) |
|
self.assertEqual(out.scores.dtype, torch.float16) |
|
|
|
|
|
class FCOSE2ETest(InstanceModelE2ETest, unittest.TestCase): |
|
CONFIG_PATH = "COCO-Detection/fcos_R_50_FPN_1x.py" |
|
|
|
|
|
class SemSegE2ETest(unittest.TestCase): |
|
CONFIG_PATH = "Misc/semantic_R_50_FPN_1x.yaml" |
|
|
|
def setUp(self): |
|
torch.manual_seed(43) |
|
self.model = get_model_no_weights(self.CONFIG_PATH) |
|
|
|
def _test_eval(self, input_sizes): |
|
inputs = [create_model_input(torch.rand(3, s[0], s[1])) for s in input_sizes] |
|
self.model.eval() |
|
self.model(inputs) |
|
|
|
def test_forward(self): |
|
self._test_eval([(200, 250), (200, 249)]) |
|
|