Inference Endpoints
GRiT / configs /GRiT_B_DenseCap_ObjectDet.yaml
Vishakaraj's picture
Upload 1797 files
a567fa4
raw
history blame
654 Bytes
_BASE_: "Base.yaml"
MODEL:
TRAIN_TASK: ["ObjectDet", "DenseCap"]
TEST_TASK: "DenseCap" # DenseCap or ObjectDet: Choose one for testing
MASK_ON: True
ROI_HEADS:
SOFT_NMS_ENABLED: False
BEAM_SIZE: 1
WEIGHTS: "detectron2://ImageNetPretrained/MAE/mae_pretrain_vit_base.pth"
BACKBONE:
NAME: build_vit_fpn_backbone
VIT_LAYERS: 12
SOLVER:
VIT_LAYER_DECAY_RATE: 0.7
DATASETS:
TRAIN: ("GRiT_coco2017_train", "vg_train")
TEST: ("coco_2017_test-dev",)
DATALOADER:
DATASET_RATIO: [1, 1]
DATASET_BS: 2
DATASET_INPUT_SIZE: [1024, 1024]
DATASET_INPUT_SCALE: [[0.1, 2.0], [0.1, 2.0]]
OUTPUT_DIR: "./output/GRiT_B_DenseCap_ObjectDet"