|
|
|
|
|
import unittest |
|
from typing import List, Sequence, Tuple |
|
import torch |
|
|
|
from detectron2.structures import ImageList |
|
|
|
|
|
class TestImageList(unittest.TestCase): |
|
def test_imagelist_padding_tracing(self): |
|
|
|
def to_imagelist(tensors: Sequence[torch.Tensor]): |
|
image_list = ImageList.from_tensors(tensors, 4) |
|
return image_list.tensor, image_list.image_sizes |
|
|
|
def _tensor(*shape): |
|
return torch.ones(shape, dtype=torch.float32) |
|
|
|
|
|
for shape in [(3, 10, 10), (3, 12, 12)]: |
|
func = torch.jit.trace(to_imagelist, ([_tensor(*shape)],)) |
|
tensor, image_sizes = func([_tensor(3, 15, 20)]) |
|
self.assertEqual(tensor.shape, (1, 3, 16, 20), tensor.shape) |
|
self.assertEqual(image_sizes[0].tolist(), [15, 20], image_sizes[0]) |
|
|
|
|
|
func = torch.jit.trace(to_imagelist, ([_tensor(10, 10)],)) |
|
tensor, image_sizes = func([_tensor(15, 20)]) |
|
self.assertEqual(tensor.shape, (1, 16, 20), tensor.shape) |
|
self.assertEqual(image_sizes[0].tolist(), [15, 20], image_sizes[0]) |
|
|
|
|
|
func = torch.jit.trace( |
|
to_imagelist, |
|
([_tensor(3, 16, 10), _tensor(3, 13, 11)],), |
|
) |
|
tensor, image_sizes = func([_tensor(3, 25, 20), _tensor(3, 10, 10)]) |
|
self.assertEqual(tensor.shape, (2, 3, 28, 20), tensor.shape) |
|
self.assertEqual(image_sizes[0].tolist(), [25, 20], image_sizes[0]) |
|
self.assertEqual(image_sizes[1].tolist(), [10, 10], image_sizes[1]) |
|
|
|
|
|
def test_imagelist_scriptability(self): |
|
image_nums = 2 |
|
image_tensor = torch.randn((image_nums, 10, 20), dtype=torch.float32) |
|
image_shape = [(10, 20)] * image_nums |
|
|
|
def f(image_tensor, image_shape: List[Tuple[int, int]]): |
|
return ImageList(image_tensor, image_shape) |
|
|
|
ret = f(image_tensor, image_shape) |
|
ret_script = torch.jit.script(f)(image_tensor, image_shape) |
|
|
|
self.assertEqual(len(ret), len(ret_script)) |
|
for i in range(image_nums): |
|
self.assertTrue(torch.equal(ret[i], ret_script[i])) |
|
|
|
def test_imagelist_from_tensors_scriptability(self): |
|
image_tensor_0 = torch.randn(10, 20, dtype=torch.float32) |
|
image_tensor_1 = torch.randn(12, 22, dtype=torch.float32) |
|
inputs = [image_tensor_0, image_tensor_1] |
|
|
|
def f(image_tensor: List[torch.Tensor]): |
|
return ImageList.from_tensors(image_tensor, 10) |
|
|
|
ret = f(inputs) |
|
ret_script = torch.jit.script(f)(inputs) |
|
|
|
self.assertEqual(len(ret), len(ret_script)) |
|
self.assertTrue(torch.equal(ret.tensor, ret_script.tensor)) |
|
|
|
|
|
if __name__ == "__main__": |
|
unittest.main() |
|
|