|
|
|
import unittest |
|
import torch |
|
from torch import Tensor |
|
|
|
from detectron2.export.torchscript import patch_instances |
|
from detectron2.structures import Boxes, Instances |
|
from detectron2.utils.testing import convert_scripted_instances |
|
|
|
|
|
class TestInstances(unittest.TestCase): |
|
def test_int_indexing(self): |
|
attr1 = torch.tensor([[0.0, 0.0, 1.0], [0.0, 0.0, 0.5], [0.0, 0.0, 1.0], [0.0, 0.5, 0.5]]) |
|
attr2 = torch.tensor([0.1, 0.2, 0.3, 0.4]) |
|
instances = Instances((100, 100)) |
|
instances.attr1 = attr1 |
|
instances.attr2 = attr2 |
|
for i in range(-len(instances), len(instances)): |
|
inst = instances[i] |
|
self.assertEqual((inst.attr1 == attr1[i]).all(), True) |
|
self.assertEqual((inst.attr2 == attr2[i]).all(), True) |
|
|
|
self.assertRaises(IndexError, lambda: instances[len(instances)]) |
|
self.assertRaises(IndexError, lambda: instances[-len(instances) - 1]) |
|
|
|
def test_script_new_fields(self): |
|
def get_mask(x: Instances) -> torch.Tensor: |
|
return x.mask |
|
|
|
class f(torch.nn.Module): |
|
def forward(self, x: Instances): |
|
proposal_boxes = x.proposal_boxes |
|
objectness_logits = x.objectness_logits |
|
return x |
|
|
|
class g(torch.nn.Module): |
|
def forward(self, x: Instances): |
|
return get_mask(x) |
|
|
|
class g2(torch.nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.g = g() |
|
|
|
def forward(self, x: Instances): |
|
proposal_boxes = x.proposal_boxes |
|
return x, self.g(x) |
|
|
|
fields = {"proposal_boxes": Boxes, "objectness_logits": Tensor} |
|
with patch_instances(fields): |
|
torch.jit.script(f()) |
|
|
|
|
|
with self.assertRaises(Exception): |
|
|
|
torch.jit.script(g2()) |
|
|
|
new_fields = {"mask": Tensor} |
|
with patch_instances(new_fields): |
|
|
|
torch.jit.script(g()) |
|
with self.assertRaises(Exception): |
|
torch.jit.script(g2()) |
|
|
|
new_fields = {"mask": Tensor, "proposal_boxes": Boxes} |
|
with patch_instances(new_fields) as NewInstances: |
|
|
|
scripted_g2 = torch.jit.script(g2()) |
|
x = NewInstances((3, 4)) |
|
x.mask = torch.rand(3) |
|
x.proposal_boxes = Boxes(torch.rand(3, 4)) |
|
scripted_g2(x) |
|
|
|
def test_script_access_fields(self): |
|
class f(torch.nn.Module): |
|
def forward(self, x: Instances): |
|
proposal_boxes = x.proposal_boxes |
|
objectness_logits = x.objectness_logits |
|
return proposal_boxes.tensor + objectness_logits |
|
|
|
fields = {"proposal_boxes": Boxes, "objectness_logits": Tensor} |
|
with patch_instances(fields): |
|
torch.jit.script(f()) |
|
|
|
def test_script_len(self): |
|
class f(torch.nn.Module): |
|
def forward(self, x: Instances): |
|
return len(x) |
|
|
|
class g(torch.nn.Module): |
|
def forward(self, x: Instances): |
|
return len(x) |
|
|
|
image_shape = (15, 15) |
|
|
|
fields = {"proposal_boxes": Boxes} |
|
with patch_instances(fields) as new_instance: |
|
script_module = torch.jit.script(f()) |
|
x = new_instance(image_shape) |
|
with self.assertRaises(Exception): |
|
script_module(x) |
|
box_tensors = torch.tensor([[5, 5, 10, 10], [1, 1, 2, 3]]) |
|
x.proposal_boxes = Boxes(box_tensors) |
|
length = script_module(x) |
|
self.assertEqual(length, 2) |
|
|
|
fields = {"objectness_logits": Tensor} |
|
with patch_instances(fields) as new_instance: |
|
script_module = torch.jit.script(g()) |
|
x = new_instance(image_shape) |
|
objectness_logits = torch.tensor([1.0]).reshape(1, 1) |
|
x.objectness_logits = objectness_logits |
|
length = script_module(x) |
|
self.assertEqual(length, 1) |
|
|
|
def test_script_has(self): |
|
class f(torch.nn.Module): |
|
def forward(self, x: Instances): |
|
return x.has("proposal_boxes") |
|
|
|
image_shape = (15, 15) |
|
fields = {"proposal_boxes": Boxes} |
|
with patch_instances(fields) as new_instance: |
|
script_module = torch.jit.script(f()) |
|
x = new_instance(image_shape) |
|
self.assertFalse(script_module(x)) |
|
|
|
box_tensors = torch.tensor([[5, 5, 10, 10], [1, 1, 2, 3]]) |
|
x.proposal_boxes = Boxes(box_tensors) |
|
self.assertTrue(script_module(x)) |
|
|
|
def test_script_to(self): |
|
class f(torch.nn.Module): |
|
def forward(self, x: Instances): |
|
return x.to(torch.device("cpu")) |
|
|
|
image_shape = (15, 15) |
|
fields = {"proposal_boxes": Boxes, "a": Tensor} |
|
with patch_instances(fields) as new_instance: |
|
script_module = torch.jit.script(f()) |
|
x = new_instance(image_shape) |
|
script_module(x) |
|
|
|
box_tensors = torch.tensor([[5, 5, 10, 10], [1, 1, 2, 3]]) |
|
x.proposal_boxes = Boxes(box_tensors) |
|
x.a = box_tensors |
|
script_module(x) |
|
|
|
def test_script_getitem(self): |
|
class f(torch.nn.Module): |
|
def forward(self, x: Instances, idx): |
|
return x[idx] |
|
|
|
image_shape = (15, 15) |
|
fields = {"proposal_boxes": Boxes, "a": Tensor} |
|
inst = Instances(image_shape) |
|
inst.proposal_boxes = Boxes(torch.rand(4, 4)) |
|
inst.a = torch.rand(4, 10) |
|
idx = torch.tensor([True, False, True, False]) |
|
with patch_instances(fields) as new_instance: |
|
script_module = torch.jit.script(f()) |
|
|
|
out = f()(inst, idx) |
|
out_scripted = script_module(new_instance.from_instances(inst), idx) |
|
self.assertTrue( |
|
torch.equal(out.proposal_boxes.tensor, out_scripted.proposal_boxes.tensor) |
|
) |
|
self.assertTrue(torch.equal(out.a, out_scripted.a)) |
|
|
|
def test_from_to_instances(self): |
|
orig = Instances((30, 30)) |
|
orig.proposal_boxes = Boxes(torch.rand(3, 4)) |
|
|
|
fields = {"proposal_boxes": Boxes, "a": Tensor} |
|
with patch_instances(fields) as NewInstances: |
|
|
|
new1 = NewInstances.from_instances(orig) |
|
new2 = convert_scripted_instances(new1) |
|
self.assertTrue(torch.equal(orig.proposal_boxes.tensor, new1.proposal_boxes.tensor)) |
|
self.assertTrue(torch.equal(orig.proposal_boxes.tensor, new2.proposal_boxes.tensor)) |
|
|
|
def test_script_init_args(self): |
|
def f(x: Tensor): |
|
image_shape = (15, 15) |
|
|
|
inst = Instances(image_shape, a=x, proposal_boxes=Boxes(x)) |
|
inst2 = Instances(image_shape, a=x) |
|
return inst.a, inst2.a |
|
|
|
fields = {"proposal_boxes": Boxes, "a": Tensor} |
|
with patch_instances(fields): |
|
script_f = torch.jit.script(f) |
|
x = torch.randn(3, 4) |
|
outputs = script_f(x) |
|
self.assertTrue(torch.equal(outputs[0], x)) |
|
self.assertTrue(torch.equal(outputs[1], x)) |
|
|
|
def test_script_cat(self): |
|
def f(x: Tensor): |
|
image_shape = (15, 15) |
|
|
|
inst = Instances(image_shape, a=x) |
|
inst2 = Instances(image_shape, a=x) |
|
|
|
inst3 = Instances(image_shape, proposal_boxes=Boxes(x)) |
|
return inst.cat([inst, inst2]), inst3.cat([inst3, inst3]) |
|
|
|
fields = {"proposal_boxes": Boxes, "a": Tensor} |
|
with patch_instances(fields): |
|
script_f = torch.jit.script(f) |
|
x = torch.randn(3, 4) |
|
output, output2 = script_f(x) |
|
self.assertTrue(torch.equal(output.a, torch.cat([x, x]))) |
|
self.assertFalse(output.has("proposal_boxes")) |
|
self.assertTrue(torch.equal(output2.proposal_boxes.tensor, torch.cat([x, x]))) |
|
|
|
|
|
if __name__ == "__main__": |
|
unittest.main() |
|
|