|
|
|
|
|
""" |
|
A main training script. |
|
|
|
This scripts reads a given config file and runs the training or evaluation. |
|
It is an entry point that is made to train standard models in detectron2. |
|
|
|
In order to let one script support training of many models, |
|
this script contains logic that are specific to these built-in models and therefore |
|
may not be suitable for your own project. |
|
For example, your research project perhaps only needs a single "evaluator". |
|
|
|
Therefore, we recommend you to use detectron2 as an library and take |
|
this file as an example of how to use the library. |
|
You may want to write your own script with your datasets and other customizations. |
|
""" |
|
|
|
import logging |
|
import os |
|
from collections import OrderedDict |
|
|
|
import detectron2.utils.comm as comm |
|
from detectron2.checkpoint import DetectionCheckpointer |
|
from detectron2.config import get_cfg |
|
from detectron2.data import MetadataCatalog |
|
from detectron2.engine import DefaultTrainer, default_argument_parser, default_setup, hooks, launch |
|
from detectron2.evaluation import ( |
|
CityscapesInstanceEvaluator, |
|
CityscapesSemSegEvaluator, |
|
COCOEvaluator, |
|
COCOPanopticEvaluator, |
|
DatasetEvaluators, |
|
LVISEvaluator, |
|
PascalVOCDetectionEvaluator, |
|
SemSegEvaluator, |
|
verify_results, |
|
) |
|
from detectron2.modeling import GeneralizedRCNNWithTTA |
|
|
|
|
|
def build_evaluator(cfg, dataset_name, output_folder=None): |
|
""" |
|
Create evaluator(s) for a given dataset. |
|
This uses the special metadata "evaluator_type" associated with each builtin dataset. |
|
For your own dataset, you can simply create an evaluator manually in your |
|
script and do not have to worry about the hacky if-else logic here. |
|
""" |
|
if output_folder is None: |
|
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference") |
|
evaluator_list = [] |
|
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type |
|
if evaluator_type in ["sem_seg", "coco_panoptic_seg"]: |
|
evaluator_list.append( |
|
SemSegEvaluator( |
|
dataset_name, |
|
distributed=True, |
|
output_dir=output_folder, |
|
) |
|
) |
|
if evaluator_type in ["coco", "coco_panoptic_seg"]: |
|
evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder)) |
|
if evaluator_type == "coco_panoptic_seg": |
|
evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder)) |
|
if evaluator_type == "cityscapes_instance": |
|
return CityscapesInstanceEvaluator(dataset_name) |
|
if evaluator_type == "cityscapes_sem_seg": |
|
return CityscapesSemSegEvaluator(dataset_name) |
|
elif evaluator_type == "pascal_voc": |
|
return PascalVOCDetectionEvaluator(dataset_name) |
|
elif evaluator_type == "lvis": |
|
return LVISEvaluator(dataset_name, output_dir=output_folder) |
|
if len(evaluator_list) == 0: |
|
raise NotImplementedError( |
|
"no Evaluator for the dataset {} with the type {}".format(dataset_name, evaluator_type) |
|
) |
|
elif len(evaluator_list) == 1: |
|
return evaluator_list[0] |
|
return DatasetEvaluators(evaluator_list) |
|
|
|
|
|
class Trainer(DefaultTrainer): |
|
""" |
|
We use the "DefaultTrainer" which contains pre-defined default logic for |
|
standard training workflow. They may not work for you, especially if you |
|
are working on a new research project. In that case you can write your |
|
own training loop. You can use "tools/plain_train_net.py" as an example. |
|
""" |
|
|
|
@classmethod |
|
def build_evaluator(cls, cfg, dataset_name, output_folder=None): |
|
return build_evaluator(cfg, dataset_name, output_folder) |
|
|
|
@classmethod |
|
def test_with_TTA(cls, cfg, model): |
|
logger = logging.getLogger("detectron2.trainer") |
|
|
|
|
|
logger.info("Running inference with test-time augmentation ...") |
|
model = GeneralizedRCNNWithTTA(cfg, model) |
|
evaluators = [ |
|
cls.build_evaluator( |
|
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA") |
|
) |
|
for name in cfg.DATASETS.TEST |
|
] |
|
res = cls.test(cfg, model, evaluators) |
|
res = OrderedDict({k + "_TTA": v for k, v in res.items()}) |
|
return res |
|
|
|
|
|
def setup(args): |
|
""" |
|
Create configs and perform basic setups. |
|
""" |
|
cfg = get_cfg() |
|
cfg.merge_from_file(args.config_file) |
|
cfg.merge_from_list(args.opts) |
|
cfg.freeze() |
|
default_setup(cfg, args) |
|
return cfg |
|
|
|
|
|
def main(args): |
|
cfg = setup(args) |
|
|
|
if args.eval_only: |
|
model = Trainer.build_model(cfg) |
|
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load( |
|
cfg.MODEL.WEIGHTS, resume=args.resume |
|
) |
|
res = Trainer.test(cfg, model) |
|
if cfg.TEST.AUG.ENABLED: |
|
res.update(Trainer.test_with_TTA(cfg, model)) |
|
if comm.is_main_process(): |
|
verify_results(cfg, res) |
|
return res |
|
|
|
""" |
|
If you'd like to do anything fancier than the standard training logic, |
|
consider writing your own training loop (see plain_train_net.py) or |
|
subclassing the trainer. |
|
""" |
|
trainer = Trainer(cfg) |
|
trainer.resume_or_load(resume=args.resume) |
|
if cfg.TEST.AUG.ENABLED: |
|
trainer.register_hooks( |
|
[hooks.EvalHook(0, lambda: trainer.test_with_TTA(cfg, trainer.model))] |
|
) |
|
return trainer.train() |
|
|
|
|
|
if __name__ == "__main__": |
|
args = default_argument_parser().parse_args() |
|
print("Command Line Args:", args) |
|
launch( |
|
main, |
|
args.num_gpus, |
|
num_machines=args.num_machines, |
|
machine_rank=args.machine_rank, |
|
dist_url=args.dist_url, |
|
args=(args,), |
|
) |
|
|